Simplicity can be confusing (understanding the manly chromosome partly through APL)

Charles Brenner, Ph.D.

Purveyor of forensic mathematics, DNA·VIEW® charles@dna-view.com http://dna-view.com Y chromosome

Simplicity can be confusing (understanding the manly chromosome partly through APL)

Autosomal pedigree

Charles Brenner, Ph.D.

Purveyor of forensic mathematics, DNA·VIEW® charles@dna-view.com http://dna-view.com

Y chromosome

Simplicity can be confusing (understanding the manly chromosome partly through APL)

Autosomal pedigree

Charles Brenner, Ph.D.

Purveyor of forensic mathematics, DNA·VIEW® charles@dna-view.com http://dna-view.com

Forensic DNA problem

- DNA matching Mr. Russell detected on victim.
- Probability of such a match by chance?
- Why Y?
 - Victim DNA may overwhelm assailant DNA.
 - Male-only Y DNA may solve that problem.

• I published some papers on Y DNA evidence

- I published some papers on Y DNA evidence
- FBI method for Y DNA is malpractice in tribal context

- I published some papers on Y DNA evidence
- FBI method for Y DNA is malpractice in tribal context
- 2015-2017 several cases in which I testified against admission of Y DNA with mixed success

- I published some papers on Y DNA evidence
- FBI method for Y DNA is malpractice in tribal context
- 2015-2017 several cases in which I testified against admission of Y DNA with mixed success Hopi ★ & also Tohono O'odham ★ tribesmen / reservation in Arizona

- I published some papers on Y DNA evidence
- FBI method for Y DNA is malpractice in tribal context
- 2015-2017 several cases in which I testified against admission of Y DNA with mixed success
 Hopi 🛠 & also Tohono O'odham 🛠 tribesmen / reservation in Arizona

Navajo 🧐 in New Mexico

- I published some papers on Y DNA evidence
- FBI method for Y DNA is malpractice in tribal context
- 2015-2017 several cases in which I testified against admission of Y DNA with mixed success
 Hopi ★ & also Tohono O'odham ★ tribesmen / reservation in Arizona
 Navajo 🙆 in New Mexico

Ashkenazi (!) in Boston

What's Y?

Karyogram of a human male

K	3	K	χ	K
1	2	- 3	4	5
K	No.	K	6	1
6	7	8	9	10
2)	Х	JL	r	
11	12	13	14	15
н	71	22	11	88
16	17	18	19	20
	11	Si		
21	22	X/Y		

What's Y?

Karyogram of a human male

X	5	K	χ	K
K	and the second	((6	"
2)))(12	8 JL 13	JL.	10
) (16	17	18	19	20
21	11 22) х/ү		

What's Y?

Karyogram of a human male

Typical identification locus within a chromosome

Typical identification locus within a

chromosome

Electron microphotograph showing 2 repeats of the motif.

Number of repeats varies between people thanks to occasional replication slippage mutations over the eons.

Typical identification locus within a chromosome chonosome DNA double strand (double 4 base-pair TA helix) motif 0.3 0.2 0.1 **Electron microphotograph** showing 2 repeats of the motif. 0 Number of repeats varies between 14 15 16 17 18 19 20 13 people thanks to occasional replication number of repeats (1/5 = approximate chance ofslippage mutations over the eons. match at a locus)

Typical identification locus within a chromosome chonosome DNA double strand (double 4 base-pair helix) A motif 0.3 frequency 0.2 **Electron microphotograph** 0.1 showing 2 repeats of the motif. 0 Number of repeats varies between 15 16 17 18 13 14 19 20 people thanks to occasional replication number of repeats (1/5 = approximate chance ofslippage mutations over the eons. match at a locus)

Forensic evidence: Suspect **allele** at locus matches crime scene allele Evidential value: 5x more likely if suspect is the donor, than if not. (NB: The cumulative evidence from 10 to 30 alleles can be very strong.)

Each parent has two D12 chromosomes, hence two vWA alleles – e.g. {14,15} and {16,17}

Each parent has two D12 chromosomes, hence two vWA alleles – e.g. {14,15} and {16,17}

Each parent contributes a chromosome at random to the child.

Each parent has two D12 chromosomes, hence two vWA alleles – e.g. {14,15} and {16,17}

Each parent contributes a chromosome at random to the child.

Each parent has two D12 chromosomes, hence two vWA alleles – e.g. {14,15} and {16,17}

Each parent contributes a chromosome at random to the child.

Child thus inherits a D12 chromosomes from each parent, and shares a vWA allele with each parent – e.g. $\{15, 16\}$

Each parent contributes one chromosome at random from each pair **independently**.

Each parent contributes one chromosome at random from each pair **independently**.

Each parent contributes one chromosome at random from each pair **independently**.

Each parent contributes one chromosome at random from each pair **independently**.

Each parent contributes one chromosome at random from each pair **independently**.

Alleles are common compared to population size, hence their frequencies vary little:

Each parent contributes one chromosome at random from each pair **independently**.

Alleles are common compared to population size, hence their frequencies

Each parent contributes one chromosome at random from each pair **independently**.

Alleles are common compared to population size, hence their frequencies

Evidential value: about 5 × factor per allele⁺

+ (but deduct !2 per locus, so $5^2 \div 2$ per locus)

Father→son transmission
Y chromosome (all loci) as a unit: "haplotype".
No mixing in transmission, hence loci are *dependent*.
Evidential value: can*not* multiply factor per locus.
Evidential value: ?
Treat haplotype as monster "allele"?
If 17 loci → 10000 haplotypes.

Father→son transmission
Y chromosome (all loci) as a unit: "haplotype".
No mixing in transmission, hence loci are *dependent*.
Evidential value: can*not* multiply factor per locus.
Evidential value: ?
Treat haplotype as monster "allele"?
If 17 loci → 10000 haplotypes.

11/6/20

Father→son transmission
Y chromosome (all loci) as a unit: "haplotype".
No mixing in transmission, hence loci are *dependent*.
Evidential value: can*not* multiply factor per locus.
Evidential value: ?
Treat haplotype as monster "allele"?
If 17 loci → 10000 haplotypes.

11/6/20

Father→son transmission
Y chromosome (all loci) as a unit: "haplotype".
No mixing in transmission, hence loci are *dependent*.
Evidential value: can*not* multiply factor per locus.
Evidential value: ?
Treat haplotype as monster "allele"?
If 17 loci → 10000 haplotypes.

Haplotypes are *rare* compared to population size; population frequencies vary enormously.

Father \rightarrow son transmission Y chromosome (all loci) as a unit: "haplotype". No mixing in transmission, hence loci are *dependent*. Evidential value: cannot multiply factor per locus. Evidential value: ? Treat haplotype as monster "allele"? If 17 loci \rightarrow 10000 haplotypes. Haplotypes are *rare* compared to population size; population frequencies vary enormously. Asexual; cloning

Y-evidence calculation approaches

Evolution of the Yfiler lineages

Evolution of the Yfiler lineages

Manufacturing diversity

Manufacturing diversity

Manufacturing diversity all Native Americans Tribe: geographical 15,000 subpopulation isolated ybp from Y- immigration 11/6/2018

Manufacturing diversity

Manufacturing diversity

• T. Kootswatewa (Feb 2016)

- T. Kootswatewa (Feb 2016)
 - Child victim

- T. Kootswatewa (Feb 2016)
 - Child victim
 - Impressive judge agrees with me

- T. Kootswatewa (Feb 2016)
 - Child victim
 - Impressive judge agrees with me
- A. Shirley (Aug 2016)

- T. Kootswatewa (Feb 2016)
 - Child victim
 - Impressive judge agrees with me
- A. Shirley (Aug 2016)
 - Lesser judge agrees with first judge

- T. Kootswatewa (Feb 2016)
 - Child victim
 - Impressive judge agrees with me
- A. Shirley (Aug 2016)
 - Lesser judge agrees with first judge
- M Russell (Oct 2017)

- T. Kootswatewa (Feb 2016)
 - Child victim
 - Impressive judge agrees with me
- A. Shirley (Aug 2016)
 - Lesser judge agrees with first judge
- M Russell (Oct 2017)
 - Can't quit on her

Y-haplotype mutation and matching

Y-haplotype mutation and matching

• Mutation model
Mutation model
 Adam←17ρ5 5 5 5 ... A ancestral 17-locus Y haplotype

Mutation model

Adam+17p5 5 5 5 ... A ancestral 17-locus Y haplotype mu+÷350 8000 200 500 ...A per-locus mutation rates. Ave mu = (÷350)

Mutation model

 Adam+17ρ5 5 5 5 ...
 A ancestral 17-locus Y haplotype

 mu+÷350 8000 200 500 ...A per-locus mutation rates. Ave mu =

 (÷350)

 SonOf+{mu{α>?0:ω ◊ ω+(.5>?0)>1 -1}``ω} A mutation at

 a locus is +1 or -1 step

Mutation model

Adam+17p5 5 5 5 5 ... A ancestral 17-locus Y haplotype mu+÷350 8000 200 500 ...A per-locus mutation rates. Ave mu = (÷350)

SonOf+{mu{α>?0:ω ◊ ω+(.5>?0)>1 ⁻1}^{..}ω} A mutation at a locus is +1 or -1 step

Son+SonOf Father A per-locus, copy & maybe mutate

- Mutation model
 - Adam←17p5 5 5 5 ... A ancestral 17-locus Y haplotype
 mu←÷350 8000 200 500 ...A per-locus mutation rates. Ave mu =
 (÷350)
 SonOf←{mu{α>?0:ω ◊ ω+(.5>?0)>1 ~1}``ω} A mutation at
 a locus is +1 or -1 step
 Son←SonOf Father A per-locus, copy & maybe mutate
- Implies

- Mutation model
 - Adam+17ρ5 5 5 5 ...
 A ancestral 17-locus Y haplotype

 mu+÷350 8000 200 500 ...A per-locus mutation rates. Ave mu =

 (÷350)

 SonOf+{mu{α>?0:ω ◊ ω+(.5>?0)>1 -1}``ω} A mutation at

 a locus is +1 or -1 step

Son+SonOf Father A per-locus, copy & maybe mutate

Implies

Pr(Son≡Father) = (×/1-mu)

- Mutation model
 - Adam+17ρ5 5 5 5 ...
 A ancestral 17-locus Y haplotype

 mu++350 8000 200 500 ...A per-locus mutation rates. Ave mu =

 (+350)

 SonOf+{mu{α>?0:ω ◊ ω+(.5>?0)>1 -1}``ω} A mutation at

 a locus is +1 or -1 step

Son+SonOf Father A per-locus, copy & maybe mutate

• Implies

Pr(Son≡Father) = (×/1-mu) Pr(Son≢Father) = 17÷350 = 5%. Patrilineage mutates every 500 years.

- Mutation model
 - Adam+17ρ5 5 5 5 ...
 A ancestral 17-locus Y haplotype

 mu+÷350 8000 200 500 ...A per-locus mutation rates. Ave mu =

 (÷350)

 SonOf+{mu{α>?0:ω ◊ ω+(.5>?0)>1 -1}``ω} A mutation at

 a locus is +1 or -1 step

Son+SonOf Father A per-locus, copy & maybe mutate

• Implies

Pr(Son≡Father) = (×/1-mu)Pr(Son≢Father) = 17÷350 = 5%. Patrilineage mutates every 500 years. Pr(≢/brothers) = 10%.

- Mutation model
 - Adam+17ρ5 5 5 5 ...
 A ancestral 17-locus Y haplotype

 mu+÷350 8000 200 500 ...A per-locus mutation rates. Ave mu =

 (÷350)

 SonOf+{mu{α>?0:ω ◊ ω+(.5>?0)>1 -1}``ω} A mutation at

 a locus is +1 or -1 step

Son+SonOf Father A per-locus, copy & maybe mutate

• Implies

Pr(Son≡Father) = (×/1-mu) Pr(Son≢Father) = $17 \div 350$ = 5%. Patrilineage mutates every 500 years. Pr(≢/brothers) = 10%.

NB: Time is reversible.

• Evolutionary model – Wright-Fisher growth + mutation

Evolutionary model – Wright-Fisher growth + mutation
 Pop+, <Adam+17/5 A generation 0, founder

Evolutionary model – Wright-Fisher growth + mutation
 Pop+, <Adam+17/5 A generation 0, founder
 vs+NewSize s v A some rule for population growth

 Evolutionary model – Wright-Fisher growth + mutation Pop←, <Adam←17/5 A generation 0, founder ∇s←NewSize s ▼ A some rule for population growth Pop←SonOf^{**}Pop[?(NewSize ≢Pop)/≢Pop] A generation g

- Evolutionary model Wright-Fisher growth + mutation Pop←, <Adam←17/5 A generation 0, founder
 ∇s←NewSize s ▼ A some rule for population growth
 Pop←SonOf¨Pop[?(NewSize ≢Pop)/≢Pop] A generation g
- Iterating generations

- Evolutionary model Wright-Fisher growth + mutation
 Pop←, <Adam←17/5 A generation 0, founder
 ∇s←NewSize s ▼ A some rule for population growth
 Pop←SonOf "Pop[?(NewSize ≢Pop)/≢Pop] A generation g
- Iterating generations
 - "Diversity" ≡ accumulation of mutations
 - Time
 - Population size

+ Each box represents a 4locus Y haplotype

locus Y haplotype

locus Y haplotype

locus Y haplotype

MRCA (Most recent common ancestor)

MRCA (Most recent common ancestor)

MRCA (Most recent common ancestor)

5644...

MRCA (Most recent common ancestor)

Y haplotype match condition

Y haplotype match condition

Y haplotypes match (IBS) if and only if the connecting patrilineage has n pairs of cancelling mutations for some $n \in 0, 1, 2, ...$

Y haplotype match condition

Y haplotypes match (IBS) if and only if the connecting patrilineage has n pairs of cancelling mutations for some $n \in 0, 1, 2, ...$

NB: Ok to apply rule per-locus.

Y match calculation #1 (primitive)

matchpr←n ConvMut (gen mu)

- A Probability of Convergent Mutation at a locus
- A Pr(two haplotypes gen generations apart match)
- A **n** = # of (cancelling) mutation pairs
- A mu = Pr(mutation) at each generation

ways+n×.!gen,gen-nA ways to position mutationspr+(mu÷2)(1-mu)×.*(2×n)(gen-2×n)A probability of each waymatchpr + ways×prA total probability of all ways

Y match calculation #2 Pr(match) given g generations of separation

maxn+11 A 10 mutation pairs per locus is plenty

gens+ingen+1 A gens+0,1, ..., ngen generations separation

ibS+(ımaxn)•.ConvMut gens•.,mu A p↔ maxn ngen (≢Yloci)
A ibS[n;g;l]= Pr(match at locus l |g generations including n mut'n pairs)

A Consider 3 matching probabilities:

□10+0**1**

IBD + ×/ibS[0;;]	A	match all loci, no mutations
IBS ←×/+ /ibS	A	match all loci, allow mutations
sIBS←IBS-IBD	A	strictly IBS (some mutations)

Due to the paternal inheritance of the Y-chromosome, all males from the same male lineage are expected to share the same Y-STR profile.

Due to the paternal inheritance of the Y-chromosome, all males from the same male lineage are expected to share the same Y-STR profile.

• Quibbles:

Due to the paternal inheritance of the Y-chromosome, all males from the same male lineage are expected to share the same Y-STR profile.

- Quibbles:
 - "Same male lineage" includes every man alive

Due to the paternal inheritance of the Y-chromosome, all males from the same male lineage are expected to share the same Y-STR profile.

- Quibbles:
 - "Same male lineage" includes every man alive
 - Even brothers only 90% to share same profile.

Due to the paternal inheritance of the Y-chromosome, all males from the same male lineage are expected to share the same Y-STR profile.

- Quibbles:
 - "Same male lineage" includes every man alive
 - Even brothers only 90% to share same profile.
- Summary

Due to the paternal inheritance of the Y-chromosome, all males from the same male lineage are expected to share the same Y-STR profile.

- Quibbles:
 - "Same male lineage" includes every man alive
 - Even brothers only 90% to share same profile.
- Summary
 - really stupid

- constant population growth rate from 1 founding man to N men today.
- 2. realistic world population

Haplotypes are NOT just super-polymorphic loci

Haplotypes are NOT just super-polymorphic loci

Haplotypes are NOT just super-polymorphic loci

Haplotypes are NOT just super-polymorphic loci

11/6/2018

Haplotypes are NOT ju super-polymorphic lo

11/6/2018

Haplotypes are NOT ju super-polymorphic lo Horal – Y-haplotype modeling rule #1: All men are related.

11/6/2018

IBS matching probability

IBS matching probability

<u>Model</u>: constant population growth rate

<u>Model:</u> constant population growth rate from 1 founding man to **N** men today..

<u>Model:</u> constant population growth rate from 1 founding man to **N** men today..

Matching evidence

<u>Model:</u> constant population growth rate from 1 founding man to **N** men today..

Matching evidence

 increases with population *size*.

<u>Model:</u> constant population growth rate from 1 founding man to **N** men today..

Matching evidence

- increases with population *size*.
- Population *age* is unimportant.

(single founding man)

1000

0

Haplotype cohort size vs populations size

Haplotype cohort size vs populations size

Number of men^{*} with same haplotype

Assume constant population growth over **Y** years from 1 founding man to **N** men today.

Then typical Yfiler haplotype is shared by

* Nod to Andersen & Balding

- *Number* of men per cohort is mostly *independent* of (unknowable, undefinable) population size.
 - For isolated population useful forensic number.

- *Number* of men per cohort is mostly *independent* of (unknowable, undefinable) population size.
 - For isolated population useful forensic number.
- Extend results of Andersen/Balding (2018) & Brenner (2014)
 - *Detailed* population history not needed

- *Number* of men per cohort is mostly *independent* of (unknowable, undefinable) population size.
 - For isolated population useful forensic number.
- Extend results of Andersen/Balding (2018) & Brenner (2014)
 - Detailed population history not needed
- Exact calculations from model (not simulation)
 - Better focused results
 - Quick: 5 minutes to model back to Y-haplotype Adam

- *Number* of men per cohort is mostly *independent* of (unknowable, undefinable) population size.
 - For isolated population useful forensic number.
- Extend results of Andersen/Balding (2018) & Brenner (2014)
 - Detailed population history not needed
- Exact calculations from model (not simulation)
 - Better focused results
 - Quick: 5 minutes to model back to Y-haplotype Adam
- I've (deliberately) chosen simplest model.
 - More work is possible.

- *Number* of men per cohort is mostly *independent* of (unknowable, undefinable) population size.
 - For isolated population useful forensic number.
- Extend results of Andersen/Balding (2018) & Brenner (2014)
 - Detailed population history not needed
- Exact calculations from model (not simulation)
 - Better focused results
 - Quick: 5 minutes to model back to Y-haplotype Adam
- I've (deliberately) chosen simplest model.
 - More work is possible.
- Current forensic practice is thoughtless

charles@dna-view.com http://dna-view.com 2 +1 510 798 7139

The end

This work received no support from the NIJ, IMF, World Bank, Bill and Melinda Gates, or the Ford Foundation. Even Queen Isabella of Spain (usually a soft touch) wouldn't pitch in.

Autosomal STR allele A

Y haplotype T

Autosomal STR allele A

Y haplotype T

• One dominant **T** family

Autosomal STR allele A

• Many A families

Y haplotype T

• One dominant **T** family

Autosomal STR allele A

- Many A families
- <u>5% of matching is family</u>

Y haplotype T

- <u>One</u> dominant **T** family
- <u>90%</u> of matching is family

Autosomal STR allele A

- Many A families
- <u>5% of matching is family</u>
- Convergent mutation <u>common</u>

Y haplotype T

- <u>One</u> dominant **T** family
- <u>90%</u> of matching is family
- Convergent mutation insignificant

