
© 2018

SERVERLESS APL

RESEARCH ON USING SERVERLESS APL IN KUBERNETES

APL KUBELESS RUNTIME

MARKO VRANIĆ

SIMCORP A/S

BELFAST, NORTHERN IRELAND, UK

31-10-2018

For now this is just research in Cloud technologies in SimCorp
A/S.

SimCorp is the world’s leading provider of integrated investment
management solutions. There is around 180+ clients around the
world.

1

© 2018

SERVERLESS COMPUTING

2

do not require server management

1. Zero Server Ops
a) No provisioning, updating, and managing server infrastructure
b) Flexible Scalability

2. No Compute Cost When Idle

Used both as FaaS and BaaS

https://github.com/cncf/wg-serverless/tree/master/whitepapers/serverless-overview

Two serverless personas:

1. Developer: writes code for, and benefits from the serverless
platform which provides them the point of view that there
are no servers nor that their code is always running.

2. Provider: deploys the serverless platform for an external or
internal customer

Serverless provides:

1. Functions-as-a-Service (FaaS), which typically provides
event-driven computing.

2. Backend-as-a-Service (BaaS), which are third-party API-
based services that replace core subsets of functionality in
an application

2

https://github.com/cncf/wg-
serverless/blob/master/workflow/spec/spec.md

2

© 20183

APL FUNCTION READY FOR CLOUD

res←echo arg;context;event

event context←arg

res←event

Basic APL serverless function.

Developer has focus on code i.e. function.

Set scene. Difference from Morten Kromberg is just the code
which is just deployed to cloud. The developer has focus only
on the code.

Extend with ⎕TS in example.

3

© 20184

APL SERVERLESS

DEMO – HELLO WORLD

• Presenting Run APL hello world from

https://github.com/mvranic/kubeless-apl-demo

Already started:

• Minikube is running with metrics-server and ingress addons.

• Local Docker registry is running in Minikubes VM docker daemon

Demo is available on GitHub on my account mvranic.

Click on https://github.com/mvranic/kubeless-apl-demo

You can try it.

Steps:

1. Got power shell which is at: C:\gitrepos\mvranic\kubeless-
apl-demo\src

2. code .

➔This start VS Code

4

© 2018

Minikube VM

Kubernetes cluster

5

SERVERLESS LABORATORY

Docker daemon

Private

Docker

Registry

Linux Node

Kubeless

Service

Kubeless Replica Set

Kubeless

Pod

Kubeless

Pod

Experiment:

To run APL functions in Kubeless serverless framework, where
Kubernetes cluster is run locally in Minikube, where a local
Docker registry is installed

Why Kubeless? It is extension of k8s and I needed 3 minutes to
run simple example.

Now I will show all servers where serverless is ruining.

5

© 20186

EXPERIMENT

To run APL functions in Kubeless serverless

framework, where Kubernetes cluster is run

locally in Minikube, where a local Docker

registry is installed

6

© 20187

APL FUNCTION READY FOR CLOUD

res←echo arg;context;event

event context←arg

res←event

Which can run Dyalog APL interpreter.

7

© 2018

JSON SERVER

JSON Server (using Conga Web Server)

\

res←HandlerWrapper arg

echo
End node

There are echo node

Simple REST servers which servers JSON enabled services.

8

© 20189

Kubeless APL Runtime Docker Image

JSON Server

echo

healthz liveness svc

\echo

Based on Bitnami Kubeless Debian
image

Docker RUN: kubeless.dyalog

healthz

End node

End node

healthz

Kubeless Runtime is Docker image.

Image is based standard Bitnami Kubeless Debian image.

Where is installed Dyalog APL 17.0

Where is cloned JSON Server

JSON server is configured

Startup of runtime is implemented

➔Coping of APL code

➔Start JSON Server

Important is Liveliness or health check probe is added to
JSONServer

Handler /

9

© 2018

APL Kubeless function – k8s extension

10

DEPLOYMENT TO KUBERNETES

Replica Set echo

Service echo

Pod

echo
Pod

echo

kubeless function deploy echo --runtime apl17.0 --from-file test-echo.dyalog --handler test-echo.echo

To run this in Kubernetes are needed:

Pods –is a group of one or more containers (such as Docker
containers. Kubernetes Pods are mortal

Replica Sets - is the Replication Controller

Services – is an abstraction which defines a logical set of Pods
and a policy by which to access them - sometimes called a
micro-service.

Using Custom Resource Definition with Kubeless function.

10

© 201811

SERVICE ECHO

Service echo

Pod

echo

Pod

echo
e
c
h

o

Service has fix IP, where Pods are dynamic (scaling)

Pod is like cattle, can die (replaced with new). Kubernetes Pods
are mortal

11

© 201812

ISTIO SERVICE MESH

Service echo

Side Car Proxy

HTTP/1.1 HTTP/2

gRPC

with or without

mTLS

Service echo

Side Car Proxy

Data Plane

Control Plane

HTTP/1.1 HTTP/2

gRPC

with or without

mTLS

MixerPilot Istio-Auth

Policy checks

telemetry

Control Plane API

TLS cert

To Envoy

Config data to

envoys

(From https://istio.io/docs/concepts/what-is-istio/)

An Istio service mesh is logically split into a data plane and a
control plane.

The data plane is composed of a collection of intelligent proxies
(Envoys) deployed as sidecars that mediate and control all
network communication between microservices.

The control plane is used to manage and configure the proxies
to route traffic, and enforce polices at the runtime.

Point on Service echos and side cars. In side is used just simple
HTTP, it is isolated

Interesting about about Side Car proxy:

- Circut-Breaker pattern.

- mTLS HTTPS encryption is provided by Side Car Proxy

12

- …

Service mesh is not part of demos.

An Istio is mainly composed of the following components:

Envoy: The Envoy is used to mediate all the inbound and
outbound traffic for all the services in the service mesh.
Functions such as dynamic service discovery, Server Load
Balancer, fault injection, and traffic management are supported.
The Envoy is deployed as a sidecar to the pods of related
services.

Pilot: The Pilot is used to collect and verify the configurations
and distribute the configurations to all kinds of Istio
components.

Mixer: The Mixer is used to enforce the access control and
usage policies in the service mesh, and collect telemetry data
from Envoy proxies and other services.

Istio-Auth: Istio-Auth provides strong service-to-service and end
user authentication.

12

© 201813

TRAFFIC FLOW

Kubernetes cluster

Ingress

Gateway Service C

Proxy

Service do D

Proxy

Service do B

Proxy

Service do A

Proxy

Egress

Gateway

(optional)

C
lie

n
t

An API object that manages external access to the services in a
cluster, typically HTTP.

Ingress can provide load balancing, SSL termination and name-
based virtual hosting from client to cluster.

Egress other direction i.e. from cluster.

https://istio.io/docs/concepts/traffic-management/

13

© 201814

DEMO – HTTP TRIGGER HELLO WORLD APL

•Presenting HTTP Trigger from

https://github.com/mvranic/kubeless-apl-demo

14

© 2018

Linux Node

Kuberentes cluster

15

MyEcho

Service

Ingress
End node

echo

Service echo

Pod echo

echo

JSON Server

echo

curl --data '{"Hallo":"APL"}' --header "Host: echo.172.24.206.168.nip.io" --header "Content-Type:application/json”
172.24.206.168/echo

Kubernetes cluster in minikube

Endpoint provided by ingress

It run is Linux Node (There is Linux VM behind)

We hit first ingress service

The Echo service

Which know which pod should be used.

Then it is executed APL code in JSON server.

Straight forward and simple.

15

© 201816

BABUSHKA

MATRYOSHKA

Source: https://commons.wikimedia.org/wiki/File:Matryoshka_transparent.png

If Docker is made in Russia, they would call it Matryoshka.

16

© 201817

DEMO – PERFORMANCE TEST

•~4ms for echo invocation

•Presenting Performance Test from

https://github.com/mvranic/kubeless-apl-demo

17

© 201818

HORIZONTAL POD AUTOSCALER

AUTOSCALING

HPA looks how much CPUs is used and increases or decreases
number of pods.

18

© 201819

DEMO – START AUTOSCALING

•Presenting Autoscaling from

https://github.com/mvranic/kubeless-apl-demo

Continue and show results latter.

19

© 201820

CNFC – THE FOUNDATION

Challenge is to find technology which is appropriate for your
business from here.

CNCF is an open source software foundation dedicated to
making cloud native computing universal and sustainable.

Cloud Native Computing Foundation: Home Page

https://www.cncf.io/

20

© 2018

CNCF SERVERLESS WG

21

21

© 2018

CLOUD EVENT TRIGGERS

22

Source https://github.com/cncf/wg-serverless

Serverless is about events and how events are managed.

(From https://github.com/cncf/wg-serverless)

Function Invocation Types

Synchronous Request (Req/Rep), e.g. HTTP Request, gRPC call
Client issues a request and waits for an immediate response.
This is a blocking call.

Asynchronous Message Queue Request (Pub/Sub), e.g.
RabbitMQ, AWS SNS, MQTT, Email, Object (S3) change,
scheduled events like CRON jobs Messages are published to an
exchange and distributed to subscribers

No strict message ordering. Exactly once processing

22

Message/Record Streams: e.g. Kafka, AWS Kinesis, AWS
DynamoDB Streams, Database CDC

An ordered set of messages/records (must be processed
sequentially)

• Usually a stream is sharded to multiple partitions/shards with
a single worker (the shard consumer) per shard

• Stream can be produced from messages, database updates
(journal), or files (e.g. CSV, Json, Parquet)

• Events can be pushed into the function runtime or pulled by
the function runtime

Batch Jobs, e.g. ETL jobs, distributed deep learning, HPC
simulation

• Jobs are scheduled or submitted to a queue, and processed at
run time using multiple function instances in parallel, each
handling one or more portion of the working set (a task)

• The job is complete when all the parallel workers successfully
completed all the computation tasks

22

© 2018

KAFKA PUB-SUB

23

PUBLISH–SUBSCRIBE PATTERN

The PubSub function is expected to consume input messages
from a predefined topic from a messaging system.

https://kubeless.io/docs/pubsub-functions/

In software architecture, publish–subscribe is a messaging
pattern where senders of messages, called publishers, do not
program the messages to be sent directly to specific receivers,
called subscribers, but instead categorize published messages
into classes without knowledge of which subscribers, if any,
there may be.

23

© 201824

DEMO – RESULTS AUTOSCALING AND KAFKA TRIGGER

•Presenting Kafka Trigger from

https://github.com/mvranic/kubeless-apl-demo

•Results of autoscaling

24

© 201825

DEMO – KUBELESS UI

•Kubeless UI forked to

https://github.com/mvranic/kubeless-ui.git

•Presenting Kubeless UI from

•Add ⎕TS to echo.

https://github.com/mvranic/kubeless-apl-demo

Extend with ⎕TS for UI.

25

© 2018© 2018

OPPORTUNITY

26

Gray is sliver or better to say gold. The system which works and
make money.

Architecture:

- Monolith

- Services

- Microservices and serverless

➔ Scaling both in functionalities (business) and execution
(performance).

26

© 201827

WHERE IS IMPLEMENTED RUN TIME

DEMO – RISE OF PHOENIX

https://github.com/mvranic/kubeless

/docker/runtime/apl/

Show APL with other languages

➔Rise of phoenix

➔Maybe I should move to marketing

Show: On Github

Docker File

kubelessapl/kubeless.dyalog

aplcode/healthz.dyalog

27

© 201828

FUNCTIONS FLAVORS

Different APL functions flavors

And they will run with C#, GO, Java Functions.

Labels distinguish where the function will be deployed and
executed.

Scaling can be executed over several clusters.

28

© 2018

CONCLUSION

29

• Freedom. Promise of no platform locking.
Functions should be written independent of serverless frameworks.
There should not be locking to any cloud platform

apt install dyalog-apl

apt install dyalog-apl-dotnetcore-bridge

(e.g. R language)

• Proprietary interpreter is not possible to integrate in Opensource framework

CI/CD pipeline

• Integration to CNFC standard tools like Prometheus is difficult

due to missing support for bridges to .Net Core or native support

29

© 2018

CONCLUSION

30

• NPM packaging of APL code for dependencies.

• Swagger support for JSON Server or Conga

• Standard code conventions in APL community

Q: What is the most productive code conventions?

A: The one from SimCorp.

• Community
➔WG Working groups
➔Maintainers

➔Contributors

E.g. APM Project

APM

30

© 2018

NEXT STEP

31

https://github.com/mvranic/kubeless-apl-demo

https://github.com/mvranic/kubeless

https://github.com/mvranic/kubeless-bundles

https://github.com/mvranic/kubeless-apl-deployment

https://github.com/mvranic/kubeless-ui

https://github.com/mvranic/JSONServe (used in Kubeless repo.)

Try APL serverless from

31

© 2018

32

© 2018© 2018

LEGAL
DISCLAIMER

The contents of this presentation are for general

information and illustrative purposes only and are used at

the reader’s own risk. SimCorp uses all reasonable

endeavours to ensure the accuracy of the information.

However, SimCorp does not guarantee or warrant the

accuracy, completeness, factual correctness, or reliability

of any information in this publication and does not accept

liability for errors, omissions, inaccuracies, or typographical

errors.

The views and opinions expressed in this publication are

not necessarily those of SimCorp.

© 2018 SimCorp A/S. All rights reserved. Without limiting

rights under copyright, no part of this document may be

reproduced, stored in, or introduced into a retrieval system,

or transmitted in any form, by any means (electronic,

mechanical, photocopying, recording, or otherwise), or

for any purpose without the express written permission

of SimCorp A/S.

33

33

