

Taming Statistics with TamStat

Stephen Mansour, PhD University of Scranton Dyalog 18 Belfast, October 29, 2018

Overview

- TamStat framework
- Descriptive statistics including graphs, tables and summary functions
- Discrete and continuous probability distributions using the probability, criticalValue theoretical and randomVariable operators
- Regression models
- Inferential statistics using the confInt, sampleSize and hypothesis operators

Standards for naming variables, functions and operators

- Variables and namespaces always begin with a capital letter
 - e.g. Height, SEX, D.State
- TamStat functions and operators always begin with a lower-case character:
 - e.g. mean, randomVariable

Data representation

- Raw Data
 - Numeric vector
 - Character
 - Vector of character vectors
 - Comma delimited vector
 - Character matrix
- Frequency form 2–column Matrix
 - 1st column: Value or midpoint
 - 2nd Column: integer
- Probability form 2 column Matrix
 - 1st column: Value or midpoint
 - 2nd Column: fraction
- Summary form Namespace
 - count, mean, sdev

Database

- A database is a namespace containing numeric and character data.
- Each variable must be all numeric or all character.
- Each variable must have the same length.
- A .csv file containing names in the first row and values in the succeeding rows can be imported as a database
- ▶ D**←**import
- Variables D
- D.Height

Exercise

- Import the Student Database
- Display a list of student heights
- Create a frequency distribution of heights
- Generate a histogram and a box plot
- Find the sample size, mean and standard deviation of each
- Create a summary namespace using the sample size (count), mean and standard deviation

Statistics deals primarily with four types of functions:

- Summary Functions
 - Descriptive Statistics
- Probability Distributions
 - Theoretical Models

B

- Relations
- Logic

A

Summary Functions

Summary functions are of the form:

 $y = f(x_1, x_2, \dots x_n)$

- They produce a single value from a vector; similar to +/ (but not on higher order arrays)
- A statistic is a summary function of a sample; a parameter is a summary function of a population.
- Summary functions are all structurally equivalent

• Example:
$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

Examples of Summary Functions

- Measures of Quantity
 - count, sum, sumSquares
- Measures of Center
 - $^{\circ}$ mean, median, mode
- Measures of Spread
 - o range, variance, sdev, iqr
- Measures of Position
 - percentile, quartile, percentileRange, zscore
- Measures of Shape
 - skewness, kurtosis

Probability Distributions

- Two types of distributions
 - Discrete
 - Continuous
- Discrete distributions are defined by the probability mass function
- Continuous distributions are defined by the density function
- The right argument is a Value
- The left argument is a parameter list

Discrete Distributions

- ► A B uniform X
- N P binomial X
- P geometric X
- N P negativeBinomial X
- M poisson X
- K M N hyperGeometric X

Continuous Distributions

- A B rectangular X
- M exponential X
- M S normal X
- D chiSquare X
- D tDist X
- D1 D2 fDist X
- A M B triangular X
- M S logNormal X
- M S weibull X

Relational and Logical Functions

- Relational functions follow the usual definitions in APL
 - \circ <, <, =, >, >, \neq , \in
- Additional relational functions include:
 - between, outside
- Logical functions also follow the usual definitions: v ^ ~ given

Summary functions

- Using the student database, find the average height.
- Find a 95% confidence interval for the height
- Find a 99% confidence interval for the height
- Using the student database, find the proportion of students who are male.
- Find a 90% confidence interval for the proportion of male students.

Let's look at an example:

What is the probability that you get at least 3 heads in seven coin tosses?

R: pbinom(2,7,0.5,lower.tail=FALSE)

APL/TamStat:

7 0.5 binomial probability ≥ 3 ↓ ↓ ↓ ↓ ↓ Left Left Operator Right Right Arg Operand Oper Arg

Distribution Wizard - Continous

Distribution Wizard Graph Calc Save Expression	Copyright (c) 2017 by Stephen Mansour n			_		×
Syntax		ParameterList				
Distribution	normal	Parameter	Value	Description]
Operator	probability	mu .	0	Mean		
Relation	between	sigma	1	Standard Deviation		
Value(s)	0 1.25					
	probability between 0 1	25				
	probability between 0 1	.25				
Result 0.39435						
Graph						
		Window	lip			
-4	-3 -2 -1	0	1	2 3	4	

A "Real-World" Reliability Example

- The failure rate for lightbulbs is 0.2% per hour.
- What is the mean time to fail?
- What is the probability that a lightbulb will last at least 750 hours?
- After how many hours will 90% of all light bulbs burn out?

Simulation

Generate random data from any distribution Dyalog generates data from: Uniform (Discrete): ?N Rectangular(0,1) Continuous: ?0

TamStat generates random data from all other distributions including normal, binomial, hypergeometric, etc.

Simulation Problem

- You own an apartment house consisting of 40 flats.
- Each flat rents for $\pounds 500$ per month.
- Demand follows a discrete uniform distribution between 30 and 40 units.
- Your monthly expenses average £15000 per month with a standard deviation of £3000.
 - What is your expected profit?
 - What is the standard deviation?
 - What is the probability that you lose money?

Newsvendor problem

A newsstand can buy newspapers for £1.50 and sell them for £2.00. Demand follows a poisson distribution with a mean of 35. How many newspapers should the owner of the newsstand purchase to maximize profit?

•
$$\Pi = E\left[p\min(q,D)\right] - cq$$

where $\Pi = \text{profit}$
 $p = \text{unit price}$ $c = \text{unit cost}$
 $q = \text{quantity ordered}$ $D = \text{demand}$

Inferential Statistics

- Confidence Intervals
 - Average height point estimate, probably wrong
 - Height is somewhere between A and B
- Hypothesis tests
 - I think average height is x
 - Do the data support this?

Planning a Wedding

Planning a Wedding

- You are planning a wedding. Costs are
 - \$500 to rent the hall
 - \$100 per guest
- 1. You have 35 guests. What is the final cost?
- 2. You have a budget of \$8000 . How many guests can you invite?
- 3. Suppose the reception hall charges \$3000 for 25 guests and \$5500 for 50 guests. What are the fixed and variable costs?

Model: $f(x) = b_0 + b_1 x$ f(x) = 500 + 100x

1. f(35) = \$4000Arithmetic: y = f(x)2. $f^{-1}(8000) = 75$ Algebra: y = f(x)3. $3000 = b_0 + b_1 25$ $5500 = b_0 + b_1 50$ $b_0 = 500$ $b_1 = 100$ 3 or more equations: best fit Regression: y = f(x)

CSI Scranton

You are investigating a murder. You find a bloody footprint size 9–1/2 near the body. What is the height of the suspect? If the suspect was known to be male, would that change anything?

Regression

- Draw a Scatter Plot
- Find the correlation between ShoeSize and Height
- Create a regression model
- Predict the height using MODEL.f
- Create a confidence interval
- Create a prediction interval
- Add D.Sex eq 'M'
- Repeat the process

Regression

- ▶ D←import'' A Import database as namespace
- D.Height A Vector of Heights
- D.ShoeSize A Vector of ShoeSizes
- MODEL←regress D.Height D.ShoeSize A Simple Regression
- MODEL.B A Intercept and Slope
- 50.77060572 1.771435553
- MODEL.RSq
- 68.37440979
- MODEL.
- MODEL.f 9.5 1
- 68.54922102
- MODEL.RSq
- MODEL.f confInt 9.5 1
- 67.45313462 69.64530743
- MODEL.f predInt 9.5 1
- 63.62800866 73.47043339
- .99 MODEL.f confInt 9.5 1
- 67.0785966 70.01984545
 - .99 MODEL.f predInt 9.5 1
- 61.94640662 75.15203542

Hypothesis Test

Using the student database, test the hypothesis that the average height is > 69 inches.

report D.Height mean hypothesis > 69

 Test the hypothesis that the percentage of students from Pennsylvania = 30%
 H+(D.State eq 'PA') proportion hypothesis = .3
 report H

Stephen M. Mansour, Ph.D.

- Adjunct Professor
 - Operations and Information Management Kania School of Management
- Email:
 - stephen.mansour@scranton.edu
- Website: www.tamstat.com

- ► Tel: (570)941-6278
- Address:

University of Scranton Loyola Science Center 311D Monroe Ave and Linden St. Scranton, PA 18510

