Taming Statistics with TamStat

Stephen Mansour, PhD
University of Scranton
Dyalog 18 Belfast, October 29, 2018

Overview

- TamStat framework
- Descriptive statistics including graphs, tables and summary functions
- Discrete and continuous probability distributions using the probability, criticalValue theoretical and randomVariable operators
- Regression models
- Inferential statistics using the confInt, sampleSize and hypothesis operators

Standards for naming variables, functions and operators

- Variables and namespaces always begin with a capital letter
- e.g. Height, SEX, D.State
- TamStat functions and operators always begin with a lower-case character:
- e.g. mean, randomVariable

Data representation

- Raw Data
- Numeric vector
- Character
- Vector of character vectors
- Comma delimited vector
- Character matrix
- Frequency form - 2-column Matrix
- $1^{\text {st }}$ column: Value or midpoint
- $2^{\text {nd }}$ Column: integer
- Probability form - 2 - column Matrix
- $1^{\text {st }}$ column: Value or midpoint
- $2^{\text {nd }}$ Column: fraction
- Summary form - Namespace
- count, mean, sdev

Database

- A database is a namespace containing numeric and character data.
- Each variable must be all numeric or all character.
- Each variable must have the same length.
- A .csv file containing names in the first row and values in the succeeding rows can be imported as a database
- D<import ''
- Variables D
- D.Height

Exercise

- Import the Student Database
- Display a list of student heights
- Create a frequency distribution of heights
- Generate a histogram and a box plot
- Find the sample size, mean and standard deviation of each
- Create a summary namespace using the sample size (count), mean and standard deviation

Statistics deals primarily with four types of functions:
 - Summary Functions
 - Descriptive Statistics
 - Probability Distributions

- Theoretical Models
- Relations
- Logic

Summary Functions

- Summary functions are of the form:

$$
y=f\left(x_{1}, x_{2}, \ldots x_{n}\right)
$$

- They produce a single value from a vector; similar to $+/$ (but not on higher order arrays)
- A statistic is a summary function of a sample; a parameter is a summary function of a population.
- Summary functions are all structurally equivalent
, Example: $\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}$

Examples of Summary Functions

- Measures of Quantity
- count, sum, sumSquares
- Measures of Center
- mean, median, mode
- Measures of Spread
- range, variance, sdev, iqr
- Measures of Position
- percentile, quartile, percentileRange, zscore
- Measures of Shape
- skewness, kurtosis

Probability Distributions

- Two types of distributions
- Discrete
- Continuous
- Discrete distributions are defined by the probability mass function
- Continuous distributions are defined by the density function
- The right argument is a Value
- The left argument is a parameter list

Discrete Distributions

- A B uniform X
- N P binomial X
- P geometric X
- N P negativeBinomial X
- M poisson X
- K M N hyperGeometric X

Continuous Distributions

- A B rectangular X
- M exponential X
- M S normal X
- D chiSquare X
- D tDist X
- D1 D2 fDist X
- A M B triangular X
- M S logNormal X
- M S weibull X

Relational and Logical Functions

- Relational functions follow the usual definitions in APL
$\circ<, \leq, \quad=, \geq,>, \neq, \epsilon$
- Additional relational functions include:
- between, outside
- Logical functions also follow the usual definitions: v ^ ~ given

Summary functions

- Using the student database, find the average height.
- Find a 95\% confidence interval for the height
- Find a 99\% confidence interval for the height
- Using the student database, find the proportion of students who are male.
- Find a 90% confidence interval for the proportion of male students.

Let's look at an example:

What is the probability that you get at least 3 heads in seven coin tosses?

R: pbinom(2,7,0.5,lower.tail=FALSE)
APL/TamStat:

Distribution Wizard - Continous

A "Real-World" Reliability Example

- The failure rate for lightbulbs is 0.2% per hour.
, What is the mean time to fail?
- What is the probability that a lightbulb will last at least 750 hours?
- After how many hours will 90% of all light bulbs burn out?

Simulation

Generate random data from any distribution Dyalog generates data from:

Uniform (Discrete):
Rectangular(0,1) Continuous:
? 0
TamStat generates random data from all other distributions including normal, binomial, hypergeometric, etc.

Simulation Problem

- You own an apartment house consisting of 40 flats.
- Each flat rents for $£ 500$ per month.
- Demand follows a discrete uniform distribution between 30 and 40 units.
- Your monthly expenses average $£ 15000$ per month with a standard deviation of $£ 3000$.
- What is your expected profit?
- What is the standard deviation?
- What is the probability that you lose money?

Newsvendor problem

- A newsstand can buy newspapers for $£ 1.50$ and sell them for $£ 2.00$. Demand follows a poisson distribution with a mean of 35 . How many newspapers should the owner of the newsstand purchase to maximize profit?
, $\Pi=E[p \min (q, D)]-c q$
where $\Pi=$ profit
$p=$ unit price $\quad c=$ unit cost
$q=$ quantity ordered $\quad D=$ demand

Inferential Statistics

, Confidence Intervals

- Average height - point estimate, probably wrong
- Height is somewhere between A and B
- Hypothesis tests
- I think average height is x
- Do the data support this?

Planning a Wedding

Planning a Wedding

- You are planning a wedding. Costs are - \$500 to rent the hall $\$ 100$ per guest

1. You have 35 guests. What is the final cost?
2. You have a budget of $\$ 8000$. How many guests can you invite?
3. Suppose the reception hall charges $\$ 3000$ for 25 guests and $\$ 5500$ for 50 guests. What are the fixed and variable costs?

Model:

$$
\begin{gathered}
f(x)=b_{0}+b_{1} x \\
f(x)=500+100 x
\end{gathered}
$$

1. $f(35)=\$ 4000$

Arithmetic: $y=f(x)$
2. $f^{-1}(8000)=75$

Algebra: $\quad y=f(x)$
3. $3000=b_{0}+b_{1} 25$

$$
\begin{aligned}
& 5500=b_{0}+b_{1} 50 \\
& b_{0}=500 \quad b_{1}=100
\end{aligned}
$$

3 or more equations: best fit
Regression: $y=f(x)$

CSI Scranton

You are investigating a murder. You find a bloody footprint size 9-1/2 near the body. What is the height of the suspect? If the suspect was known to be male, would that change anything?

Regression

- Draw a Scatter Plot
- Find the correlation between ShoeSize and Height
- Create a regression model
- Predict the height using MODEL.f
- Create a confidence interval
- Create a prediction interval
- Add D.Sex eq ‘M’
- Repeat the process

Regression

```
    D<import,', A Import database as namespace
    D.Height a Vector of Heights
    D.ShoeSize a Vector of ShoeSizes
    MODEL<regress D.Height D.ShoeSize a Simple Regression
    MODEL.B & Intercept and Slope
50.77060572 1.771435553
            MODEL.RSq
68.37440979
MODEL.
    MODEL.f 9.5 1
68.54922102
    MODEL.RSq
    MODEL.f confInt 9.5 1
67.45313462 69.64530743
    MODEL.f predInt 9.5 1
63.62800866 73.47043339
    .99 MODEL.f confInt 9.5 1
67.0785966 70.01984545
    .99 MODEL.f predInt 9.5 1
61.94640662 75.15203542
```


Hypothesis Test

- Using the student database, test the hypothesis that the average height is >69 inches.

$$
\text { report D.Height mean hypothesis > } 69
$$

- Test the hypothesis that the percentage of students from Pennsylvania $=30 \%$

```
H\leftarrow(D.State eq 'PA') proportion hypothesis = . 3
    report H
```


Stephen M. Mansour, Ph.D.

- Adjunct Professor

Operations and Information Management
Kania School of Management

- Email:
stephen.mansour@scranton.edu
, Website: www.tamstat.com
- Tel: (570)941-6278
- Address:

University of Scranton
Loyola Science Center 311D Monroe Ave and Linden St.
Scranton, PA 18510

