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Installing APL

dpkg –i linux_64_17.0.34604_unicode.x86_64.deb 
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Installing RIDE 4.1
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Installing RIDE
• Linux:
dpkg –i ride-4.1.3367_linux.amd64.deb

• Windows:
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Secure Shell (ssh)
• ssh is a widely used protocol for making 

executing commands on a remote computer
• It is always secure (encrypted) even if you log in 

with a userid and password
• It supports the use of key pairs to validate login 

without a password
o You log in with a user id and a private key
o The ssh client and server negotiate, and if the public 

key corresponding to your private key exists in the 
right place, you are granted access

o The right place is typically the file
/home/user/.ssh/authorized_keys
Which contains concatenated public keys
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ssh setup
• ssh (secure shell) is the safest way to connect to 

a Linux machine.
• If you are going to connect to your machine 

from Windows, follow these instructions:

• First, install openssh server if necessary
sudo apt-get install openssh-server

• ssh relies on a key pair, which we will generate
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Generate a Key Pair
• Create / verify the existence of a directory called 

$HOME/.ssh to store the keys. 
• Run the ssh-keygen command to generate public and 

private keys:
ssh-keygen -t  rsa

• This creates the following files in the $HOME/.ssh
directory:
o Private key: id_rsa
o Public key: id_rsa.pub
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Install public key on server

• Append the public key to the authorized_keys file on the 
Linux machine:

cd ~/.ssh
cat id_rsa.pub >> authorized_keys

• This will now allow ssh from a client which is able to 
present the private key file (id_rsa)
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Install public key on client
• Copy the private key file to the client and give it a 

good name like mary.key
• If you are going to use PuTTY, you need to convert it 

to .ppk format with PuTTYGen:
o Load the .key file and save it as .ppk
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Connect with PuTTY
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Exercise 1
• Install Dyalog APL under Linux
• Install RIDE under Windows or Linux
• Use RIDE to start an APL Session on your Linux machine
• Create a folder to contain a simple application with one or two 

functions that you will turn into a service
o The functions should take JSON-able data
o Experiment with ⎕JSON to see what a suitable argument will look like 

in JSON format, and note that down (you will need it in the next 
exercise).

• Use ]save to populate the folder
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JSONServer
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JSONServer
• A TCP Server based on Conga 
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JSONServer
• A TCP Server based on Conga 
• Uses ⎕JSON to convert 

incoming data to APL arrays

POST /GetSign HTTP 1.1
[10,31]
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JSONServer
• A TCP Server based on Conga 
• Uses ⎕JSON to convert 

incoming data to APL arrays
• Calls Function

POST /GetSign HTTP 1.1
[10,31]

r←GetSign 10 31
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JSONServer
• A TCP Server based on Conga 
• Uses ⎕JSON to convert 

incoming data to APL arrays
• Calls Function
• Converts results back to JSON 

and returns HTTP

POST /GetSign HTTP 1.1
[10,31]

r←GetSign 10 31

HTTP/1.1 200 OK
"Scorpio"



20

Workshop TP2

JSONServer Features
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JSONServer Features
• Can Serve Up
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JSONServer Features
• Can Serve Up

o Functions in a namespace (including #)
 The AllowedFns property can be used 

to control which functions to expose
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JSONServer Features
• Can Serve Up

o Functions in a namespace (including #)
 The AllowedFns property can be used 

to control which functions to expose
o A folder full of .dyalog files
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JSONServer Features
• Can Serve Up

o Functions in a namespace (including #)
 The AllowedFns property can be used 

to control which functions to expose
o A folder full of .dyalog files
o Nested folders / namespaces

 URLs a la     localhost:8080/ns/foo
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JSONServer Features
• Can Serve Up

o Functions in a namespace (including #)
 The AllowedFns property can be used 

to control which functions to expose
o A folder full of .dyalog files
o Nested folders / namespaces

 URLs a la     localhost:8080/ns/foo
• Uses ⎕JSON to convert incoming 

data & results to or from APL arrays



26

Workshop TP2

JSONServer Features
• Can Serve Up

o Functions in a namespace (including #)
 The AllowedFns property can be used 

to control which functions to expose
o A folder full of .dyalog files
o Nested folders / namespaces

 URLs a la     localhost:8080/ns/foo
• Uses ⎕JSON to convert incoming 

data & results to or from APL arrays
• Can be started from the command 

line
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Get it from
https://github.com/Dyalog/JSONServer

JSONServer Features
• Can Serve Up

o Functions in a namespace (including #)
 The AllowedFns property can be used 

to control which functions to expose
o A folder full of .dyalog files
o Nested folders / namespaces

 URLs a la     localhost:8080/ns/foo
• Uses ⎕JSON to convert incoming 

data & results to or from APL arrays
• Can be started from the command 

line
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Exercise 2
• Install JSONServer:

git clone https://github.com/Dyalog/JSONServer

• Start APL and ]load your functions from Exercise 1 into a namespace, for 
example:

)NS MyNs
]load /app-folder/* -target=MyNs

• Verify that your functions were loaded.

https://github.com/Dyalog/JSONServer
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Exercise 2 - Continued
• Start JSONServer

]load /Devt/JSONServer/Source/JSONServer
srv←⎕NEW JSONServer
)ns Zodiac
]load C:\D18TP2\ZodiacService\backend\* -target=Zodiac
srv.CodeLocation←#.Zodiac
srv.Port←8080
srv.Start

• Test it using browser to localhost:8080 or curl (see below)
srv.Stop

• CURL:
curl --header "content-type: application/json"
--data "JSON Argument" http://127.0.0.1:8080/YourFunction
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