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Linux
• Container technology works best with 

Linux, due to the size of the kernel
• Windows kernels are getting smaller 

but are still 10-20x as large as Linux 
(~0.5-1Gb vs 50Mb).

• Good News: Your Dyalog APL code will 
run unchanged under Linux.
o So long as it doesn't call Windows APIs
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Docker for Windows
• Docker for Windows uses Microsoft 

Hyper-V to run either Linux or 
Windows virtual machines.

• It provides the same command line 
interface as Docker under Linux
docker build –t myco/myapp-test .

docker run -p 8081:8080 -v /somefolder:/data –e DEBUG=1 myco/myapp-test

docker push myco/myapp-test
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Installing Docker + docker-compose
Ubuntu

sudo snap install docker
snap services docker
sudo groupadd docker
sudo usermod -aG docker mkrom
(log out and in again)

Downloaded docker-compose from
github.com/docker/compose/releases

sudo mv Downloads/docker-compose-Linux-x86-64 
/usr/local/bin/docker-compose
sudo chmod +x /usr/local/bin/docker-compose

Amazon Linux

sudo yum update -y
sudo yum install -y docker
sudo service docker start
sudo usermod -a -G docker ec2-user
(log out and in again)

sudo pip install docker-compose
docker-compose --version
sudo yum install git
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FROM ubuntu:18.04

ADD ./dyalog-unicode_17.0.34604_amd64.deb /
ADD /myapp/v7/test /myapp

RUN dpkg -i /dyalog*.deb
RUN git clone https://github.com/dyalog/JSONServer /JSS

ENV RIDE_INIT="SERVE:*:4502"
ENV CodeLocation=/myapp

CMD dyalog /JSS/JSONServer.dws

Container Basics
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FROM ubuntu:18.04

ADD ./dyalog-unicode_17.0.34604_amd64.deb /
ADD /myapp/v7/test /myapp

RUN dpkg -i /dyalog*.deb
RUN git clone https://github.com/dyalog/JSONServer /JSS

ENV RIDE_INIT="SERVE:*:4502"
ENV CodeLocation=/myapp

CMD dyalog /JSS/JSONServer.dws

Container Basics

Base Image

Files to Add

Run during Build

Environment Vars

Run at Startup

This "Dockerfile" completely describes a machine which will run "myapp".
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FROM ubuntu:18.04

ADD ./dyalog-unicode_17.0.34604_amd64.deb /
ADD /myapp/v7/test /myapp

RUN dpkg -i /dyalog*.deb
RUN git clone https://github.com/dyalog/JSONServer /JSS
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ENV CodeLocation=/myapp
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This "Dockerfile" completely describes a machine which will run "myapp".

Your Code
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FROM ubuntu:18.04

ADD ./dyalog-unicode_17.0.34604_amd64.deb /

RUN dpkg -i /dyalog*.deb
RUN git clone https://github.com/dyalog/JSONServer /JSS
RUN git clone https://github.com/myco/myapp /myapp

ENV RIDE_INIT="SERVE:*:4502"
ENV CodeLocation=/myapp

CMD dyalog /JSS/JSONServer.dws

Container Basics

Base Image

Files to Add

Run during Build

Environment Vars

Run at Startup

Uses GitHub to load the source code for "myapp".

Your Code
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FROM ubuntu:18.04
ADD ./dyalog-unicode_17.0.34604_amd64.deb /
ADD /myapp/v7/test /myapp
RUN dpkg -i /dyalog*.deb
RUN git clone https://github.com/dyalog/JSONServer /JSS
ENV RIDE_INIT="SERVE:*:4502"
ENV CodeLocation=/myapp
CMD dyalog /JSS/JSONServer.dws

Building and Running the Docker Image
Dockerfile
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FROM ubuntu:18.04
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ADD /myapp/v7/test /myapp
RUN dpkg -i /dyalog*.deb
RUN git clone https://github.com/dyalog/JSONServer /JSS
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ENV CodeLocation=/myapp
CMD dyalog /JSS/JSONServer.dws

Building and Running the Docker Image

Build

Dockerfile

docker build –t myco/myapp-test .
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FROM ubuntu:18.04
ADD ./dyalog-unicode_17.0.34604_amd64.deb /
ADD /myapp/v7/test /myapp
RUN dpkg -i /dyalog*.deb
RUN git clone https://github.com/dyalog/JSONServer /JSS
ENV RIDE_INIT="SERVE:*:4502"
ENV CodeLocation=/myapp
CMD dyalog /JSS/JSONServer.dws

Building and Running the Docker Image

Build

Run

Dockerfile

docker run -p 8081:8080 -v /somefolder:/data –e DEBUG=1 myco/myapp-test

docker build –t myco/myapp-test .
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docker run      syntax & common switches

Switch Description
-p hhhh:cccc Map TCP port cccc in container to hhhh on host
-e name=value Set environment variable inside the container
-v /hfolder:/cfolder Mount /hfolder in container as /cfolder
-t Allocate a pseudo-TTY
-i Keep stdin open even if not attached
--rm Discard changes when container terminates

docker run -p 8081:8080 -v /somefolder:/data –e DEBUG=1 myco/myapp-test

docker run [OPTIONS] IMAGE [COMMAND] [ARG...]
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Distributing the Image: DockerHub
Build

Run
docker run -p 8081:8080 -v /somefolder:/data –e DEBUG=1 myco/myapp-test

docker build –t myco/myapp-test .
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Distributing the Image: DockerHub
Build

Run
docker run -p 8081:8080 -v /somefolder:/data –e DEBUG=1 myco/myapp-test

docker build –t myco/myapp-test .

We can "push" the image to DockerHub:
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Distributing the Image: DockerHub
Build

Run
docker run -p 8081:8080 -v /somefolder:/data –e DEBUG=1 myco/myapp-test

docker build –t myco/myapp-test .

Push
docker login

docker push myco/myapp-test

We can "push" the image to DockerHub:
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Distributing the Image: DockerHub
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Push
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docker push myco/myapp-test

We can "push" the image to DockerHub:

Now, the following will work on ANY computer that has Docker installed
(assuming myco/myapp-test is a PUBLIC container)
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Distributing the Image: DockerHub
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docker push myco/myapp-test

We can "push" the image to DockerHub:

Now, the following will work on ANY computer that has Docker installed
(assuming myco/myapp-test is a PUBLIC container)
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Public Dyalog Containers
These currently for experimentation only and are based on 
UNSUPPORTED NON-COMMERCIAL Dyalog 17.1.
All run full development interpreters in interactive terminal mode.

dyalog/dyalog:17.1-dbg
• Linux + Dyalog APL Interpreter
dyalog/jsonserver:dbg
• dyalog:17.1-dbg + JSONServer
dyalog/miserver:dbg
• dyalog:17.1-dbg + MiServer
dyalog/jupyter
• dyalog:17.1-dbg + Python, Anaconda & Jupyter Notebook
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Dyalog Scripts
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Dyalog Scripts
dyalog-c folder [rideport]
• Starts container dyalog/dyalog:17.1-dbg

folder  is always mounted as /app in the container

rideport is the optional port that RIDE can be attached to
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Dyalog Scripts
dyalog-c folder [rideport]
• Starts container dyalog/dyalog:17.1-dbg

jsonserver-c folder [[httpport] [rideport]]
• Starts container dyalog/jsonserver-dbg

folder  is always mounted as /app in the container
httpport is the application port that is always exposed by json- & mi-servers
rideport is the optional port that RIDE can be attached to
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Dyalog Scripts
dyalog-c folder [rideport]
• Starts container dyalog/dyalog:17.1-dbg

jsonserver-c folder [[httpport] [rideport]]
• Starts container dyalog/jsonserver-dbg

miserver-c folder [[httpport] [rideport]]
• Starts container dyalog/miserver-dbg

folder  is always mounted as /app in the container
httpport is the application port that is always exposed by json- & mi-servers
rideport is the optional port that RIDE can be attached to
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Dyalog Scripts
dyalog-c folder [rideport]
• Starts container dyalog/dyalog:17.1-dbg

jsonserver-c folder [[httpport] [rideport]]
• Starts container dyalog/jsonserver-dbg

miserver-c folder [[httpport] [rideport]]
• Starts container dyalog/miserver-dbg

jupyter-c [folder[/notebook]] [httpport]
• Starts container dyalog/jupyter (Jupyter notebook server)

folder  is always mounted as /app in the container
httpport is the application port that is always exposed by json- & mi-servers
rideport is the optional port that RIDE can be attached to
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Exercise 3
Wherever you have docker installed:

git clone https://github.com/mkromberg/dyalog-docker

Depending on your OS, try one of:

dyalog-docker/winscripts/dyalog-c /yourapp 4502
dyalog-docker/bashscripts/dyalog-c /yourapp 4502

Verify that you can connect RIDE to localhost:4502
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Exercise 4
Use the jsonserver-c script to launch your folder as a 
containerized JSONServer:

jsonserver-c /yourapp 8080 4502

Verify that you can connect a browser to both ports and 
call your function from the browser front-end (using the 
data you noted in Exercise 1)
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Exercise 5
• View the docker cheat sheet:

https://github.com/wsargent/docker-cheat-sheet

• Experiment with
docker ps
docker stop image_name

• If you don't )off from RIDE, you will need docker 
stop to stop your continers

https://github.com/wsargent/docker-cheat-sheet
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FROM ubuntu:18.04
ADD ./dyalog-unicode_17.0.34604_amd64.deb /
RUN dpkg -i /dyalog*.deb
RUN git clone https://github.com/dyalog/JSONServer /JSS
ADD /myapp/v7/test /myapp
ENV RIDE_INIT="SERVE:*:4502"
ENV CodeLocation=/myapp
CMD dyalog /JSS/JSONServer.dws

Benefits of Dyalog's Public Containers
Without Public Containers
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FROM ubuntu:18.04
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Without Public Containers

FROM dyalog/jsonserver:dbg
ADD /myapp/v7/test /myapp
ENV RIDE_INIT="SERVE:*:4502"
ENV CodeLocation=/myapp
CMD dyalog /JSS/JSONServer.dws

With Public Containers
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FROM ubuntu:18.04
ADD ./dyalog-unicode_17.0.34604_amd64.deb /
RUN dpkg -i /dyalog*.deb
RUN git clone https://github.com/dyalog/JSONServer /JSS
ADD /myapp/v7/test /myapp
ENV RIDE_INIT="SERVE:*:4502"
ENV CodeLocation=/myapp
CMD dyalog /JSS/JSONServer.dws

Benefits of Dyalog's Public Containers
Without Public Containers

FROM dyalog/jsonserver:dbg
ADD /myapp/v7/test /myapp
ENV RIDE_INIT="SERVE:*:4502"
ENV CodeLocation=/myapp
CMD dyalog /JSS/JSONServer.dws

With Public Containers

docker run –p 8080:8080 –p 4502:4502 –v /myapp/v7/test:/myapp 
–e RIDE_INIT="SERVE:*:4502" –e CodeLocation=/myapp dyalog/jsonserver

Or even without a Dockerfile
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FROM dyalog/jsonserver:dbg

ENV MAXWS=256M
ENV CodeLocation=/app
ENV Port=8080

ENV Secure=1
ENV SSLValidation=64 
ENV RootCertDir=/certs/ca            
ENV ServerCertFile=/certs/server/myserver-cert.pem 
ENV ServerKeyFile=/certs/server/myserver-key.pem 

ADD test-certs /certs

ADD backend /app

CMD dyalog /JSONServer/Distribution/JSONServer.dws

Secure JSONServer

Runs ZodiacService backend as a secure service
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FROM dyalog/jsonserver:dbg

ENV MAXWS=256M
ENV CodeLocation=/app
ENV Port=8080

ENV Secure=1
ENV SSLValidation=64 
ENV RootCertDir=/certs/ca            
ENV ServerCertFile=/certs/server/myserver-cert.pem 
ENV ServerKeyFile=/certs/server/myserver-key.pem 

ADD test-certs /certs

ADD backend /app

CMD dyalog /JSONServer/Distribution/JSONServer.dws

Secure JSONServer
APL+JSONServer included

Runs ZodiacService backend as a secure service
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FROM dyalog/jsonserver:dbg

ENV MAXWS=256M
ENV CodeLocation=/app
ENV Port=8080

ENV Secure=1
ENV SSLValidation=64 
ENV RootCertDir=/certs/ca            
ENV ServerCertFile=/certs/server/myserver-cert.pem 
ENV ServerKeyFile=/certs/server/myserver-key.pem 

ADD test-certs /certs

ADD backend /app

CMD dyalog /JSONServer/Distribution/JSONServer.dws

Secure JSONServer
APL+JSONServer included

Basic JSONServer
Settings

Runs ZodiacService backend as a secure service
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FROM dyalog/jsonserver:dbg

ENV MAXWS=256M
ENV CodeLocation=/app
ENV Port=8080

ENV Secure=1
ENV SSLValidation=64 
ENV RootCertDir=/certs/ca            
ENV ServerCertFile=/certs/server/myserver-cert.pem 
ENV ServerKeyFile=/certs/server/myserver-key.pem 

ADD test-certs /certs

ADD backend /app

CMD dyalog /JSONServer/Distribution/JSONServer.dws

Secure JSONServer
APL+JSONServer included

Basic JSONServer
Settings

Secure Options

Runs ZodiacService backend as a secure service
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FROM dyalog/jsonserver:dbg

ENV MAXWS=256M
ENV CodeLocation=/app
ENV Port=8080

ENV Secure=1
ENV SSLValidation=64 
ENV RootCertDir=/certs/ca            
ENV ServerCertFile=/certs/server/myserver-cert.pem 
ENV ServerKeyFile=/certs/server/myserver-key.pem 

ADD test-certs /certs

ADD backend /app

CMD dyalog /JSONServer/Distribution/JSONServer.dws

Secure JSONServer
APL+JSONServer included

Basic JSONServer
Settings

Secure Options

Runs ZodiacService backend as a secure service

Add Certificates
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FROM dyalog/jsonserver:dbg

ENV MAXWS=256M
ENV CodeLocation=/app
ENV Port=8080

ENV Secure=1
ENV SSLValidation=64 
ENV RootCertDir=/certs/ca            
ENV ServerCertFile=/certs/server/myserver-cert.pem 
ENV ServerKeyFile=/certs/server/myserver-key.pem 

ADD test-certs /certs

ADD backend /app

CMD dyalog /JSONServer/Distribution/JSONServer.dws

Secure JSONServer
APL+JSONServer included

Basic JSONServer
Settings

Secure Options

Application Code

Runs ZodiacService backend as a secure service

Add Certificates
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FROM dyalog/jsonserver:dbg

ENV MAXWS=256M
ENV CodeLocation=/app
ENV Port=8080

ENV Secure=1
ENV SSLValidation=64 
ENV RootCertDir=/certs/ca            
ENV ServerCertFile=/certs/server/myserver-cert.pem 
ENV ServerKeyFile=/certs/server/myserver-key.pem 

ADD test-certs /certs

ADD backend /app

CMD dyalog /JSONServer/Distribution/JSONServer.dws

Secure JSONServer
APL+JSONServer included

Basic JSONServer
Settings

Secure Options

Application Code

Start JSONServer

Runs ZodiacService backend as a secure service

Add Certificates
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Exercise 6
• Add your own function to the "secure" service
• Have it use certificate information in some way
• Build it
• Run it, exposing port 8080 and 4502
• Experiment with

docker container ls
docker container rm image_id
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Exercise 7 / Demo
• Load, modify and run the SSHDemo 

function. 
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Ideas for Future Containers
Runtime and Development/Debug versions of all 
containers.

dyalog/tamstat
• Runs HTML/JS version of Tamstat "anywhere"
• Looks for data in mapped folder /data

dyalog/isolate
• Runs an isolate server
• If /workspace.dws is found,

each isolate will be intialised from it
• /isolate.config will set security rules and other options
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