
Workshop TP2
APL in the Cloud
APL, RIDE & JSONServer

Morten Kromberg, CXO, Dyalog
Andy Shiers, COO, Dyalog

1

Workshop TP2

Installing Dyalog APL 17.0

2

Workshop TP2

Installing Dyalog APL 17.0

3

Workshop TP2

Installing APL

dpkg –i linux_64_17.0.34604_unicode.x86_64.deb

4

Workshop TP2

Installing RIDE 4.1

5

Workshop TP2

Installing RIDE 4.1

6

Workshop TP2

Installing RIDE
• Linux:
dpkg –i ride-4.1.3367_linux.amd64.deb

• Windows:

7

Workshop TP2

Secure Shell (ssh)
• ssh is a widely used protocol for making

executing commands on a remote computer
• It is always secure (encrypted) even if you log in

with a userid and password
• It supports the use of key pairs to validate login

without a password
o You log in with a user id and a private key
o The ssh client and server negotiate, and if the public

key corresponding to your private key exists in the
right place, you are granted access

o The right place is typically the file
/home/user/.ssh/authorized_keys
Which contains concatenated public keys

8

Workshop TP2

ssh setup
• ssh (secure shell) is the safest way to connect to

a Linux machine.
• If you are going to connect to your machine

from Windows, follow these instructions:

• First, install openssh server if necessary
sudo apt-get install openssh-server

• ssh relies on a key pair, which we will generate

9

Workshop TP2

Generate a Key Pair
• Create / verify the existence of a directory called

$HOME/.ssh to store the keys.
• Run the ssh-keygen command to generate public and

private keys:
ssh-keygen -t rsa

• This creates the following files in the $HOME/.ssh
directory:
o Private key: id_rsa
o Public key: id_rsa.pub

10

Workshop TP2

Install public key on server

• Append the public key to the authorized_keys file on the
Linux machine:

cd ~/.ssh
cat id_rsa.pub >> authorized_keys

• This will now allow ssh from a client which is able to
present the private key file (id_rsa)

11

Workshop TP2

Install public key on client
• Copy the private key file to the client and give it a

good name like mary.key
• If you are going to use PuTTY, you need to convert it

to .ppk format with PuTTYGen:
o Load the .key file and save it as .ppk

12

Workshop TP2

13

Workshop TP2

Connect with PuTTY

14

Workshop TP2

Exercise 1
• Install Dyalog APL under Linux
• Install RIDE under Windows or Linux
• Use RIDE to start an APL Session on your Linux machine
• Create a folder to contain a simple application with one or two

functions that you will turn into a service
o The functions should take JSON-able data
o Experiment with ⎕JSON to see what a suitable argument will look like

in JSON format, and note that down (you will need it in the next
exercise).

• Use]save to populate the folder

15

Workshop TP2

JSONServer

16

Workshop TP2

JSONServer
• A TCP Server based on Conga

17

Workshop TP2

JSONServer
• A TCP Server based on Conga
• Uses ⎕JSON to convert

incoming data to APL arrays

POST /GetSign HTTP 1.1
[10,31]

18

Workshop TP2

JSONServer
• A TCP Server based on Conga
• Uses ⎕JSON to convert

incoming data to APL arrays
• Calls Function

POST /GetSign HTTP 1.1
[10,31]

r←GetSign 10 31

19

Workshop TP2

JSONServer
• A TCP Server based on Conga
• Uses ⎕JSON to convert

incoming data to APL arrays
• Calls Function
• Converts results back to JSON

and returns HTTP

POST /GetSign HTTP 1.1
[10,31]

r←GetSign 10 31

HTTP/1.1 200 OK
"Scorpio"

20

Workshop TP2

JSONServer Features

21

Workshop TP2

JSONServer Features
• Can Serve Up

22

Workshop TP2

JSONServer Features
• Can Serve Up

o Functions in a namespace (including #)
 The AllowedFns property can be used

to control which functions to expose

23

Workshop TP2

JSONServer Features
• Can Serve Up

o Functions in a namespace (including #)
 The AllowedFns property can be used

to control which functions to expose
o A folder full of .dyalog files

24

Workshop TP2

JSONServer Features
• Can Serve Up

o Functions in a namespace (including #)
 The AllowedFns property can be used

to control which functions to expose
o A folder full of .dyalog files
o Nested folders / namespaces

 URLs a la localhost:8080/ns/foo

25

Workshop TP2

JSONServer Features
• Can Serve Up

o Functions in a namespace (including #)
 The AllowedFns property can be used

to control which functions to expose
o A folder full of .dyalog files
o Nested folders / namespaces

 URLs a la localhost:8080/ns/foo
• Uses ⎕JSON to convert incoming

data & results to or from APL arrays

26

Workshop TP2

JSONServer Features
• Can Serve Up

o Functions in a namespace (including #)
 The AllowedFns property can be used

to control which functions to expose
o A folder full of .dyalog files
o Nested folders / namespaces

 URLs a la localhost:8080/ns/foo
• Uses ⎕JSON to convert incoming

data & results to or from APL arrays
• Can be started from the command

line

27

Workshop TP2

Get it from
https://github.com/Dyalog/JSONServer

JSONServer Features
• Can Serve Up

o Functions in a namespace (including #)
 The AllowedFns property can be used

to control which functions to expose
o A folder full of .dyalog files
o Nested folders / namespaces

 URLs a la localhost:8080/ns/foo
• Uses ⎕JSON to convert incoming

data & results to or from APL arrays
• Can be started from the command

line

28

Workshop TP2

Exercise 2
• Install JSONServer:

git clone https://github.com/Dyalog/JSONServer

• Start APL and]load your functions from Exercise 1 into a namespace, for
example:

)NS MyNs
]load /app-folder/* -target=MyNs

• Verify that your functions were loaded.

https://github.com/Dyalog/JSONServer

29

Workshop TP2

Exercise 2 - Continued
• Start JSONServer

]load /Devt/JSONServer/Source/JSONServer
srv←⎕NEW JSONServer
)ns Zodiac
]load C:\D18TP2\ZodiacService\backend* -target=Zodiac
srv.CodeLocation←#.Zodiac
srv.Port←8080
srv.Start

• Test it using browser to localhost:8080 or curl (see below)
srv.Stop

• CURL:
curl --header "content-type: application/json"
--data "JSON Argument" http://127.0.0.1:8080/YourFunction

	Workshop TP2�APL in the Cloud�APL, RIDE & JSONServer
	Installing Dyalog APL 17.0
	Installing Dyalog APL 17.0
	Installing APL
	Installing RIDE 4.1
	Installing RIDE 4.1
	Installing RIDE
	Secure Shell (ssh)
	ssh setup
	Generate a Key Pair
	Install public key on server
	Install public key on client
	Slide Number 13
	Connect with PuTTY
	Exercise 1
	JSONServer
	JSONServer
	JSONServer
	JSONServer
	JSONServer
	JSONServer Features
	JSONServer Features
	JSONServer Features
	JSONServer Features
	JSONServer Features
	JSONServer Features
	JSONServer Features
	JSONServer Features
	Exercise 2
	Exercise 2 - Continued

