
Morten Kromberg, CXO, Dyalog

Workshop TP2
APL in the Cloud
Docker

1

Cloud Computing with APL

Why Containers ?

From:
http://www.zdnet.com/article/what-is-docker-and-why-is-it-so-darn-popular/

2

Cloud Computing with APL

Why Containers ?

From:
http://www.zdnet.com/article/what-is-docker-and-why-is-it-so-darn-popular/

3

Cloud Computing with APL

Linux

4

Cloud Computing with APL

Linux
• Container technology works best with

Linux, due to the size of the kernel

5

Cloud Computing with APL

Linux
• Container technology works best with

Linux, due to the size of the kernel
• Windows kernels are getting smaller

but are still 10-20x as large as Linux
(~0.5-1Gb vs 50Mb).

6

Cloud Computing with APL

Linux
• Container technology works best with

Linux, due to the size of the kernel
• Windows kernels are getting smaller

but are still 10-20x as large as Linux
(~0.5-1Gb vs 50Mb).

• Good News: Your Dyalog APL code will
run unchanged under Linux.
o So long as it doesn't call Windows APIs

7

Cloud Computing with APL

Docker for Windows
• Docker for Windows uses Microsoft

Hyper-V to run either Linux or
Windows virtual machines.

• It provides the same command line
interface as Docker under Linux
docker build –t myco/myapp-test .

docker run -p 8081:8080 -v /somefolder:/data –e DEBUG=1 myco/myapp-test

docker push myco/myapp-test

8

Cloud Computing with APL

9

Cloud Computing with APL

10

Cloud Computing with APL

Installing Docker + docker-compose
Ubuntu

sudo snap install docker
snap services docker
sudo groupadd docker
sudo usermod -aG docker mkrom
(log out and in again)

Downloaded docker-compose from
github.com/docker/compose/releases

sudo mv Downloads/docker-compose-Linux-x86-64
/usr/local/bin/docker-compose
sudo chmod +x /usr/local/bin/docker-compose

Amazon Linux

sudo yum update -y
sudo yum install -y docker
sudo service docker start
sudo usermod -a -G docker ec2-user
(log out and in again)

sudo pip install docker-compose
docker-compose --version
sudo yum install git

11

Cloud Computing with APL

FROM ubuntu:18.04

ADD ./dyalog-unicode_17.0.34604_amd64.deb /
ADD /myapp/v7/test /myapp

RUN dpkg -i /dyalog*.deb
RUN git clone https://github.com/dyalog/JSONServer /JSS

ENV RIDE_INIT="SERVE:*:4502"
ENV CodeLocation=/myapp

CMD dyalog /JSS/JSONServer.dws

Container Basics

12

Cloud Computing with APL

FROM ubuntu:18.04

ADD ./dyalog-unicode_17.0.34604_amd64.deb /
ADD /myapp/v7/test /myapp

RUN dpkg -i /dyalog*.deb
RUN git clone https://github.com/dyalog/JSONServer /JSS

ENV RIDE_INIT="SERVE:*:4502"
ENV CodeLocation=/myapp

CMD dyalog /JSS/JSONServer.dws

Container Basics

Base Image

13

Cloud Computing with APL

FROM ubuntu:18.04

ADD ./dyalog-unicode_17.0.34604_amd64.deb /
ADD /myapp/v7/test /myapp

RUN dpkg -i /dyalog*.deb
RUN git clone https://github.com/dyalog/JSONServer /JSS

ENV RIDE_INIT="SERVE:*:4502"
ENV CodeLocation=/myapp

CMD dyalog /JSS/JSONServer.dws

Container Basics

Base Image

Files to Add

14

Cloud Computing with APL

FROM ubuntu:18.04

ADD ./dyalog-unicode_17.0.34604_amd64.deb /
ADD /myapp/v7/test /myapp

RUN dpkg -i /dyalog*.deb
RUN git clone https://github.com/dyalog/JSONServer /JSS

ENV RIDE_INIT="SERVE:*:4502"
ENV CodeLocation=/myapp

CMD dyalog /JSS/JSONServer.dws

Container Basics

Base Image

Files to Add

Run during Build

15

Cloud Computing with APL

FROM ubuntu:18.04

ADD ./dyalog-unicode_17.0.34604_amd64.deb /
ADD /myapp/v7/test /myapp

RUN dpkg -i /dyalog*.deb
RUN git clone https://github.com/dyalog/JSONServer /JSS

ENV RIDE_INIT="SERVE:*:4502"
ENV CodeLocation=/myapp

CMD dyalog /JSS/JSONServer.dws

Container Basics

Base Image

Files to Add

Run during Build

Environment Vars

16

Cloud Computing with APL

FROM ubuntu:18.04

ADD ./dyalog-unicode_17.0.34604_amd64.deb /
ADD /myapp/v7/test /myapp

RUN dpkg -i /dyalog*.deb
RUN git clone https://github.com/dyalog/JSONServer /JSS

ENV RIDE_INIT="SERVE:*:4502"
ENV CodeLocation=/myapp

CMD dyalog /JSS/JSONServer.dws

Container Basics

Base Image

Files to Add

Run during Build

Environment Vars

Run at Startup

17

Cloud Computing with APL

FROM ubuntu:18.04

ADD ./dyalog-unicode_17.0.34604_amd64.deb /
ADD /myapp/v7/test /myapp

RUN dpkg -i /dyalog*.deb
RUN git clone https://github.com/dyalog/JSONServer /JSS

ENV RIDE_INIT="SERVE:*:4502"
ENV CodeLocation=/myapp

CMD dyalog /JSS/JSONServer.dws

Container Basics

Base Image

Files to Add

Run during Build

Environment Vars

Run at Startup

This "Dockerfile" completely describes a machine which will run "myapp".

18

Cloud Computing with APL

FROM ubuntu:18.04

ADD ./dyalog-unicode_17.0.34604_amd64.deb /
ADD /myapp/v7/test /myapp

RUN dpkg -i /dyalog*.deb
RUN git clone https://github.com/dyalog/JSONServer /JSS

ENV RIDE_INIT="SERVE:*:4502"
ENV CodeLocation=/myapp

CMD dyalog /JSS/JSONServer.dws

Container Basics

Base Image

Files to Add

Run during Build

Environment Vars

Run at Startup

This "Dockerfile" completely describes a machine which will run "myapp".

Your Code

19

Cloud Computing with APL

FROM ubuntu:18.04

ADD ./dyalog-unicode_17.0.34604_amd64.deb /

RUN dpkg -i /dyalog*.deb
RUN git clone https://github.com/dyalog/JSONServer /JSS
RUN git clone https://github.com/myco/myapp /myapp

ENV RIDE_INIT="SERVE:*:4502"
ENV CodeLocation=/myapp

CMD dyalog /JSS/JSONServer.dws

Container Basics

Base Image

Files to Add

Run during Build

Environment Vars

Run at Startup

Uses GitHub to load the source code for "myapp".

Your Code

20

Cloud Computing with APL

FROM ubuntu:18.04
ADD ./dyalog-unicode_17.0.34604_amd64.deb /
ADD /myapp/v7/test /myapp
RUN dpkg -i /dyalog*.deb
RUN git clone https://github.com/dyalog/JSONServer /JSS
ENV RIDE_INIT="SERVE:*:4502"
ENV CodeLocation=/myapp
CMD dyalog /JSS/JSONServer.dws

Building and Running the Docker Image
Dockerfile

21

Cloud Computing with APL

FROM ubuntu:18.04
ADD ./dyalog-unicode_17.0.34604_amd64.deb /
ADD /myapp/v7/test /myapp
RUN dpkg -i /dyalog*.deb
RUN git clone https://github.com/dyalog/JSONServer /JSS
ENV RIDE_INIT="SERVE:*:4502"
ENV CodeLocation=/myapp
CMD dyalog /JSS/JSONServer.dws

Building and Running the Docker Image

Build

Dockerfile

docker build –t myco/myapp-test .

22

Cloud Computing with APL

FROM ubuntu:18.04
ADD ./dyalog-unicode_17.0.34604_amd64.deb /
ADD /myapp/v7/test /myapp
RUN dpkg -i /dyalog*.deb
RUN git clone https://github.com/dyalog/JSONServer /JSS
ENV RIDE_INIT="SERVE:*:4502"
ENV CodeLocation=/myapp
CMD dyalog /JSS/JSONServer.dws

Building and Running the Docker Image

Build

Run

Dockerfile

docker run -p 8081:8080 -v /somefolder:/data –e DEBUG=1 myco/myapp-test

docker build –t myco/myapp-test .

23

Cloud Computing with APL

docker run syntax & common switches

Switch Description
-p hhhh:cccc Map TCP port cccc in container to hhhh on host
-e name=value Set environment variable inside the container
-v /hfolder:/cfolder Mount /hfolder in container as /cfolder
-t Allocate a pseudo-TTY
-i Keep stdin open even if not attached
--rm Discard changes when container terminates

docker run -p 8081:8080 -v /somefolder:/data –e DEBUG=1 myco/myapp-test

docker run [OPTIONS] IMAGE [COMMAND] [ARG...]

24

Cloud Computing with APL

Distributing the Image: DockerHub
Build

Run
docker run -p 8081:8080 -v /somefolder:/data –e DEBUG=1 myco/myapp-test

docker build –t myco/myapp-test .

25

Cloud Computing with APL

Distributing the Image: DockerHub
Build

Run
docker run -p 8081:8080 -v /somefolder:/data –e DEBUG=1 myco/myapp-test

docker build –t myco/myapp-test .

We can "push" the image to DockerHub:

26

Cloud Computing with APL

Distributing the Image: DockerHub
Build

Run
docker run -p 8081:8080 -v /somefolder:/data –e DEBUG=1 myco/myapp-test

docker build –t myco/myapp-test .

Push
docker login

docker push myco/myapp-test

We can "push" the image to DockerHub:

27

Cloud Computing with APL

Distributing the Image: DockerHub
Build

Run
docker run -p 8081:8080 -v /somefolder:/data –e DEBUG=1 myco/myapp-test

docker build –t myco/myapp-test .

Push
docker login

docker push myco/myapp-test

We can "push" the image to DockerHub:

Now, the following will work on ANY computer that has Docker installed
(assuming myco/myapp-test is a PUBLIC container)

28

Cloud Computing with APL

Distributing the Image: DockerHub
Build

Run
docker run -p 8081:8080 -v /somefolder:/data –e DEBUG=1 myco/myapp-test

docker build –t myco/myapp-test .

Push
docker login

docker push myco/myapp-test

We can "push" the image to DockerHub:

Now, the following will work on ANY computer that has Docker installed
(assuming myco/myapp-test is a PUBLIC container)

29

Cloud Computing with APL

30

Cloud Computing with APL

Public Dyalog Containers
These currently for experimentation only and are based on
UNSUPPORTED NON-COMMERCIAL Dyalog 17.1.
All run full development interpreters in interactive terminal mode.

dyalog/dyalog:17.1-dbg
• Linux + Dyalog APL Interpreter
dyalog/jsonserver:dbg
• dyalog:17.1-dbg + JSONServer
dyalog/miserver:dbg
• dyalog:17.1-dbg + MiServer
dyalog/jupyter
• dyalog:17.1-dbg + Python, Anaconda & Jupyter Notebook

31

Cloud Computing with APL

Dyalog Scripts

32

Cloud Computing with APL

Dyalog Scripts
dyalog-c folder [rideport]
• Starts container dyalog/dyalog:17.1-dbg

folder is always mounted as /app in the container

rideport is the optional port that RIDE can be attached to

33

Cloud Computing with APL

Dyalog Scripts
dyalog-c folder [rideport]
• Starts container dyalog/dyalog:17.1-dbg

jsonserver-c folder [[httpport] [rideport]]
• Starts container dyalog/jsonserver-dbg

folder is always mounted as /app in the container
httpport is the application port that is always exposed by json- & mi-servers
rideport is the optional port that RIDE can be attached to

34

Cloud Computing with APL

Dyalog Scripts
dyalog-c folder [rideport]
• Starts container dyalog/dyalog:17.1-dbg

jsonserver-c folder [[httpport] [rideport]]
• Starts container dyalog/jsonserver-dbg

miserver-c folder [[httpport] [rideport]]
• Starts container dyalog/miserver-dbg

folder is always mounted as /app in the container
httpport is the application port that is always exposed by json- & mi-servers
rideport is the optional port that RIDE can be attached to

35

Cloud Computing with APL

Dyalog Scripts
dyalog-c folder [rideport]
• Starts container dyalog/dyalog:17.1-dbg

jsonserver-c folder [[httpport] [rideport]]
• Starts container dyalog/jsonserver-dbg

miserver-c folder [[httpport] [rideport]]
• Starts container dyalog/miserver-dbg

jupyter-c [folder[/notebook]] [httpport]
• Starts container dyalog/jupyter (Jupyter notebook server)

folder is always mounted as /app in the container
httpport is the application port that is always exposed by json- & mi-servers
rideport is the optional port that RIDE can be attached to

36

Cloud Computing with APL

37

Cloud Computing with APL

38

Cloud Computing with APL

Exercise 3
Wherever you have docker installed:

git clone https://github.com/mkromberg/dyalog-docker

Depending on your OS, try one of:

dyalog-docker/winscripts/dyalog-c /yourapp 4502
dyalog-docker/bashscripts/dyalog-c /yourapp 4502

Verify that you can connect RIDE to localhost:4502

39

Cloud Computing with APL

Exercise 4
Use the jsonserver-c script to launch your folder as a
containerized JSONServer:

jsonserver-c /yourapp 8080 4502

Verify that you can connect a browser to both ports and
call your function from the browser front-end (using the
data you noted in Exercise 1)

40

Cloud Computing with APL

Exercise 5
• View the docker cheat sheet:

https://github.com/wsargent/docker-cheat-sheet

• Experiment with
docker ps
docker stop image_name

• If you don't)off from RIDE, you will need docker
stop to stop your continers

https://github.com/wsargent/docker-cheat-sheet

41

Cloud Computing with APL

FROM ubuntu:18.04
ADD ./dyalog-unicode_17.0.34604_amd64.deb /
RUN dpkg -i /dyalog*.deb
RUN git clone https://github.com/dyalog/JSONServer /JSS
ADD /myapp/v7/test /myapp
ENV RIDE_INIT="SERVE:*:4502"
ENV CodeLocation=/myapp
CMD dyalog /JSS/JSONServer.dws

Benefits of Dyalog's Public Containers
Without Public Containers

42

Cloud Computing with APL

FROM ubuntu:18.04
ADD ./dyalog-unicode_17.0.34604_amd64.deb /
RUN dpkg -i /dyalog*.deb
RUN git clone https://github.com/dyalog/JSONServer /JSS
ADD /myapp/v7/test /myapp
ENV RIDE_INIT="SERVE:*:4502"
ENV CodeLocation=/myapp
CMD dyalog /JSS/JSONServer.dws

Benefits of Dyalog's Public Containers
Without Public Containers

FROM dyalog/jsonserver:dbg
ADD /myapp/v7/test /myapp
ENV RIDE_INIT="SERVE:*:4502"
ENV CodeLocation=/myapp
CMD dyalog /JSS/JSONServer.dws

With Public Containers

43

Cloud Computing with APL

FROM ubuntu:18.04
ADD ./dyalog-unicode_17.0.34604_amd64.deb /
RUN dpkg -i /dyalog*.deb
RUN git clone https://github.com/dyalog/JSONServer /JSS
ADD /myapp/v7/test /myapp
ENV RIDE_INIT="SERVE:*:4502"
ENV CodeLocation=/myapp
CMD dyalog /JSS/JSONServer.dws

Benefits of Dyalog's Public Containers
Without Public Containers

FROM dyalog/jsonserver:dbg
ADD /myapp/v7/test /myapp
ENV RIDE_INIT="SERVE:*:4502"
ENV CodeLocation=/myapp
CMD dyalog /JSS/JSONServer.dws

With Public Containers

docker run –p 8080:8080 –p 4502:4502 –v /myapp/v7/test:/myapp
–e RIDE_INIT="SERVE:*:4502" –e CodeLocation=/myapp dyalog/jsonserver

Or even without a Dockerfile

44

Cloud Computing with APL

FROM dyalog/jsonserver:dbg

ENV MAXWS=256M
ENV CodeLocation=/app
ENV Port=8080

ENV Secure=1
ENV SSLValidation=64
ENV RootCertDir=/certs/ca
ENV ServerCertFile=/certs/server/myserver-cert.pem
ENV ServerKeyFile=/certs/server/myserver-key.pem

ADD test-certs /certs

ADD backend /app

CMD dyalog /JSONServer/Distribution/JSONServer.dws

Secure JSONServer

Runs ZodiacService backend as a secure service

45

Cloud Computing with APL

FROM dyalog/jsonserver:dbg

ENV MAXWS=256M
ENV CodeLocation=/app
ENV Port=8080

ENV Secure=1
ENV SSLValidation=64
ENV RootCertDir=/certs/ca
ENV ServerCertFile=/certs/server/myserver-cert.pem
ENV ServerKeyFile=/certs/server/myserver-key.pem

ADD test-certs /certs

ADD backend /app

CMD dyalog /JSONServer/Distribution/JSONServer.dws

Secure JSONServer
APL+JSONServer included

Runs ZodiacService backend as a secure service

46

Cloud Computing with APL

FROM dyalog/jsonserver:dbg

ENV MAXWS=256M
ENV CodeLocation=/app
ENV Port=8080

ENV Secure=1
ENV SSLValidation=64
ENV RootCertDir=/certs/ca
ENV ServerCertFile=/certs/server/myserver-cert.pem
ENV ServerKeyFile=/certs/server/myserver-key.pem

ADD test-certs /certs

ADD backend /app

CMD dyalog /JSONServer/Distribution/JSONServer.dws

Secure JSONServer
APL+JSONServer included

Basic JSONServer
Settings

Runs ZodiacService backend as a secure service

47

Cloud Computing with APL

FROM dyalog/jsonserver:dbg

ENV MAXWS=256M
ENV CodeLocation=/app
ENV Port=8080

ENV Secure=1
ENV SSLValidation=64
ENV RootCertDir=/certs/ca
ENV ServerCertFile=/certs/server/myserver-cert.pem
ENV ServerKeyFile=/certs/server/myserver-key.pem

ADD test-certs /certs

ADD backend /app

CMD dyalog /JSONServer/Distribution/JSONServer.dws

Secure JSONServer
APL+JSONServer included

Basic JSONServer
Settings

Secure Options

Runs ZodiacService backend as a secure service

48

Cloud Computing with APL

FROM dyalog/jsonserver:dbg

ENV MAXWS=256M
ENV CodeLocation=/app
ENV Port=8080

ENV Secure=1
ENV SSLValidation=64
ENV RootCertDir=/certs/ca
ENV ServerCertFile=/certs/server/myserver-cert.pem
ENV ServerKeyFile=/certs/server/myserver-key.pem

ADD test-certs /certs

ADD backend /app

CMD dyalog /JSONServer/Distribution/JSONServer.dws

Secure JSONServer
APL+JSONServer included

Basic JSONServer
Settings

Secure Options

Runs ZodiacService backend as a secure service

Add Certificates

49

Cloud Computing with APL

FROM dyalog/jsonserver:dbg

ENV MAXWS=256M
ENV CodeLocation=/app
ENV Port=8080

ENV Secure=1
ENV SSLValidation=64
ENV RootCertDir=/certs/ca
ENV ServerCertFile=/certs/server/myserver-cert.pem
ENV ServerKeyFile=/certs/server/myserver-key.pem

ADD test-certs /certs

ADD backend /app

CMD dyalog /JSONServer/Distribution/JSONServer.dws

Secure JSONServer
APL+JSONServer included

Basic JSONServer
Settings

Secure Options

Application Code

Runs ZodiacService backend as a secure service

Add Certificates

50

Cloud Computing with APL

FROM dyalog/jsonserver:dbg

ENV MAXWS=256M
ENV CodeLocation=/app
ENV Port=8080

ENV Secure=1
ENV SSLValidation=64
ENV RootCertDir=/certs/ca
ENV ServerCertFile=/certs/server/myserver-cert.pem
ENV ServerKeyFile=/certs/server/myserver-key.pem

ADD test-certs /certs

ADD backend /app

CMD dyalog /JSONServer/Distribution/JSONServer.dws

Secure JSONServer
APL+JSONServer included

Basic JSONServer
Settings

Secure Options

Application Code

Start JSONServer

Runs ZodiacService backend as a secure service

Add Certificates

51

Cloud Computing with APL

52

Cloud Computing with APL

53

Cloud Computing with APL

Exercise 6
• Add your own function to the "secure" service
• Have it use certificate information in some way
• Build it
• Run it, exposing port 8080 and 4502
• Experiment with

docker container ls
docker container rm image_id

54

Cloud Computing with APL

Exercise 7 / Demo
• Load, modify and run the SSHDemo

function.

55

Cloud Computing with APL

Ideas for Future Containers
Runtime and Development/Debug versions of all
containers.

dyalog/tamstat
• Runs HTML/JS version of Tamstat "anywhere"
• Looks for data in mapped folder /data

dyalog/isolate
• Runs an isolate server
• If /workspace.dws is found,

each isolate will be intialised from it
• /isolate.config will set security rules and other options

	Slide Number 1
	Why Containers ?
	Why Containers ?
	Linux
	Linux
	Linux
	Linux
	Docker for Windows
	Slide Number 9
	Slide Number 10
	Installing Docker + docker-compose
	Container Basics
	Container Basics
	Container Basics
	Container Basics
	Container Basics
	Container Basics
	Container Basics
	Container Basics
	Container Basics
	Building and Running the Docker Image
	Building and Running the Docker Image
	Building and Running the Docker Image
	docker run syntax & common switches
	Distributing the Image: DockerHub
	Distributing the Image: DockerHub
	Distributing the Image: DockerHub
	Distributing the Image: DockerHub
	Distributing the Image: DockerHub
	Slide Number 30
	Public Dyalog Containers
	Dyalog Scripts
	Dyalog Scripts
	Dyalog Scripts
	Dyalog Scripts
	Dyalog Scripts
	Slide Number 37
	Slide Number 38
	Exercise 3
	Exercise 4
	Exercise 5
	Benefits of Dyalog's Public Containers
	Benefits of Dyalog's Public Containers
	Benefits of Dyalog's Public Containers
	Secure JSONServer
	Secure JSONServer
	Secure JSONServer
	Secure JSONServer
	Secure JSONServer
	Secure JSONServer
	Secure JSONServer
	Slide Number 52
	Slide Number 53
	Exercise 6
	Exercise 7 / Demo
	Ideas for Future Containers

