JDVYALOC

Belfast 2018

Workshop TP2
APL in the Cloud
Docker

Morten Kromberg, CXO, Dyalog

Why Containers ?

Containers vs. VMs

. Containers are isolated,
but share OS and, where
' appropriate, bins/libraries
Guest Guest
05 0s

Host 0S5 Host OS
Server
From:

http://www.zdnet.com/article/what-is-docker-and-why-is-it-so-darn-popular/

W
(0}
() s
(0}
©}
K

ey

N\

Containers vs. VMs

Containers are isolated,
but share OS and, where

P appropriate, bins/libraries

Guest

05

Docker Engine

Host 05 Host 05

Server Server

HOValog | o OUC omputing WIithh AP

Linux

Linux

* Container technology works best with
Linux, due to the size of the kernel

Linux

* Container technology works best with
Linux, due to the size of the kernel

* Windows kernels are getting smaller
but are still 10-20x as large as Linux
(~0.5-1Gb vs 50Mb).

Linux

* Container technology works best with
Linux, due to the size of the kernel

* Windows kernels are getting smaller
but are still 10-20x as large as Linux
(~0.5-1Gb vs 50Mb).

* Good News: Your Dyalog APL code will
run unchanged under Linux.
o Solong as it doesn't call Windows APIs

Docker for Windows

* Docker for Windows uses Microsoft
Hyper-V to run either Linux or
Windows virtual machines.

* |t provides the same command line
interface as Docker under Linux

docker build —t myco/myapp-test .

docker push myco/myapp-test

w' docker docs Q Search the docs Guides Product manuals Glossary Reference Samples Docker v18.03 (current) » =

Docker Enterprise Edition - (& Edit this page
.
SRPE— . Install Docker for Windows v Reauest docschanges
Estimated reading time: 4 minutes ? Get support
Docker Compose v)
Docker for Windows is the Community Edition (CE) of Docker for Microsoft 0@ ¢
Docker for Mac v Windows. To download Docker for Windows, head to Docker Store.)
On this page:
Docker for Windows -
Download from Docker Store What to know before you install
Getting started About Windows containers
Install Docker for Windows Install Docker for Windows desktop app
Deploy on Kubernetes What tO knOW before YOU InSta" Start Docker for Windows
Networking +« README FIRST for Docker Toolbox and Docker Machine users: Docker Where to go next

for Windows requires Microsoft Hyper-V to run. The Docker for

Migrate Docker Toolbox Windows installer enables Hyper-V for you, if needed, and restart

Logs and troubleshooting your machine. After Hyper-V is enabled, VirtualBox no longer works,
but any VirtualBox VM images remain. VirtualBox VMs created with

FAQs docker-machine (includingthe default one typically created during

Open source licensing Toolbox install) no longer start. These VMs cannot be used side-by-

side with Docker for Windows. However, you can still use

Stable release notes
docker-machine to manage remote VMSs.

Edeelreleaselnoles « System Requirements:
Docker ID accounts o Windows 10 64bit: Pro, Enterprise or Education (1607
Anniversary Update, Build 14393 or later).
Docker Machine - o Virtualization is enabled in BIOS. Typically, virtualization is
enabled by default. This is different from having Hyper-V
! Docker Store - enabled. For more detail see Virtualization must be enabled in

Troubleshooting.

w' docker docs Q Search the docs Guides Product manuals Glossary Reference Samples Docker v18.03 (current) » =

Docker Enterprise Edition - (& Edit this page
.
SRPE— . Install Docker for Windows v Reauest docschanges
Estimated reading time: 4 minutes ? Get support
Docker Compose v)
Docker for Windows is the Community Edition (CE) of Docker for Microsoft 0@ ¢
Docker for Mac v Windows. To download Docker for Windows, head to Docker Store.)
On this page:
Docker for Windows -
Download from Docker Store What to know before you install
Getting started About Windows containers
Install Docker for Windows Install Docker for Windows desktop app
Deploy on Kubernetes What tO knOW before YOU InSta" Start Docker for Windows
Networking +« README FIRST for Docker Toolbox and Docker Machine users: Docker Where to go next

for Windows requires Microsoft Hyper-V to run. The Docker for

Migrate Docker Toolbox Windows installer enables Hyper-V for you, if needed, and restart

Logs and troubleshooting your machine. After Hyper-V is enabled, VirtualBox no longer works,
but any VirtualBox VM images remain. VirtualBox VMs created with

FAQs docker-machine (includingthe default one typically created during

Open source licensing Toolbox install) no longer start. These VMs cannot be used side-by-

side with Docker for Windows. However, you can still use

Stable release notes
docker-machine to manage remote VMSs.

Edeelreleaselnoles « System Requirements:
Docker ID accounts o Windows 10 64bit: Pro, Enterprise or Education (1607
Anniversary Update, Build 14393 or later).
Docker Machine - o Virtualization is enabled in BIOS. Typically, virtualization is
enabled by default. This Is airrerent rrom having Hyper-v
! Docker Store - enabled. For more detail see Virtualization must be enabled in

Troubleshooting.

DVYALOC o

Installing Docker + docker-compose

Ubuntu Amazon Linux
sudo snap install docker

snap services docker

sudo groupadd docker

sudo usermod -aG docker mkrom
(log out and in again)

sudo yum update -y

sudo yum install -y docker

sudo service docker start

sudo usermod -a -G docker ec2-user
(log out and in again)

Downloaded docker-compose from
github.com/docker/compose/releases

sudo mv Downloads/docker-compose-Linux-x86-64
/usr/local/bin/docker-compose

sudo chmod +x /usr/local/bin/docker-compose

sudo pip install docker-compose
docker-compose --version
sudo yum install git

¥ #dyalog18 Cloud Computing with APL

Container Basics

FROM ubuntu:18.04

ADD ./dyalog-unicode_17.0.34604 amd64.deb /
ADD /myapp/v7/test /myapp

RUN dpkg -1 /dyalog*.deb
RUN git clone https://github.com/dyalog/JSONServer /JSS

RIDE_INIT=""SERVE:*:4502"

CodeLocation=/myapp

dyalog /JSS/JSONServer .dws

Container Basics

Base Image FROM ubuntu:18.04

ADD ./dyalog-unicode_17.0.34604 amd64.deb /
ADD /myapp/v7/test /myapp

RUN dpkg -1 /dyalog*.deb
RUN git clone https://github.com/dyalog/JSONServer /JSS

RIDE_INIT=""SERVE:*:4502"

CodeLocation=/myapp

dyalog /JSS/JSONServer .dws

Container Basics

Base Image

Files to Add

FROM ubuntu:18.04

ADD
ADD

RUN
RUN

./dyalog-unicode _17.0.34604_amd64.deb /
/myapp/v7/test /myapp

dpkg -1 /dyalog*.deb
git clone https://github.com/dyalog/JSONServer /JSS

RIDE_INIT="SERVE:*:4502"
CodeLocation=/myapp

dyalog /JSS/JSONServer .dws

Container Basics

Base Image
Files to Add

Run during Build

FROM ubuntu:18.04

ADD
ADD

RUN
RUN

./dyalog-unicode _17.0.34604_amd64.deb /
/myapp/v7/test /myapp

dpkg -1 /dyalog*.deb
git clone https://github.com/dyalog/JSONServer /JSS

RIDE_INIT="SERVE:*:4502"
CodeLocation=/myapp

dyalog /JSS/JSONServer .dws

Container Basics

Base Image FROM ubuntu:18.04

. ADD ./dyalog-unicode_17.0.34604 amd64.deb /
Files to Add ADD /myapp/v7/test /myapp

. . RUN dpkg -1 /dyalog*.deb
Run during Build RUN git clone https://github.com/dyalog/JSONServer /JSS
Environment Vars RIDE_INIT=""SERVE:*:4502"

CodelLocation=/myapp

dyalog /JSS/JSONServer .dws

Container Basics

Base Image FROM ubuntu:18.04

. ADD ./dyalog-unicode_17.0.34604 amd64.deb /
Files to Add ADD /myapp/v7/test /myapp

. . RUN dpkg -1 /dyalog*.deb
Run during Build RUN git clone https://github.com/dyalog/JSONServer /JSS
Environment Vars ENV RIDE_INIT="SERVE:*:4502"

ENV CodeLocation=/myapp

Run at Startup CMD dyalog /JSS/JSONServer .dws

Container Basics

Base Image FROM ubuntu:18.04

. ADD ./dyalog-unicode_17.0.34604 amd64.deb /
Files to Add ADD /myapp/v7/test /myapp

. . RUN dpkg -1 /dyalog*.deb
Run during Build RUN git clone https://github.com/dyalog/JSONServer /JSS
Environment Vars ENV RIDE_INIT="SERVE:*:4502"

ENV CodeLocation=/myapp

Run at Startup CMD dyalog /JSS/JSONServer .dws

This "Dockerfile" completely describes a machine which will run "myapp".

Container Basics

Base Image FROM ubuntu:18.04

. ADD ./dyalog-unicode 17.0.34604 amd64.deb /
Files to Add |ADD /myapp/v7/test /myapp fe——-o-:

Your Code

. . RUN dpkg -1 /dyalog*.deb
Run during Build RUN git clone https://github.com/dyalog/JSONServer /JSS

Environment Vars ENV RIDE_INIT="SERVE:*:4502"
ENV CodeLocation=/myapp

Run at Startup CMD dyalog /JSS/JSONServer .dws

This "Dockerfile" completely describes a machine which will run "myapp".

Container Basics

FROM ubuntu:18.04

ADD ./dyalog-unicode_17.0.34604 amd64.deb /

Your Code

RUN dpkg -1 /dyalog*.deb
RUN git clone https://git -.com/dyalog/JSONServer /JSS
[RUN git clone https://github.com/myco/myapp /myapp|

ENV RIDE_INIT="SERVE:*:4502"
ENV CodeLocation=/myapp

CMD dyalog /JSS/JSONServer .dws

Uses GitHub to load the source code for "myapp".

Building and Running the Docker Image

Dockerfile

FROM ubuntu:18.04

ADD ./dyalog-unicode 17.0.34604 amd64.deb /

ADD /myapp/v7/test /myapp

RUN dpkg -i /dyalog*.deb

RUN git clone https://github.com/dyalog/JSONServer /JSS
ENV RIDE_INIT=""SERVE:*:4502"

ENV CodelLocation=/myapp

CMD dyalog /JSS/JSONServer.dws

77’@
ey

W
(0}

0]

(0}
—@
<

Building and Running the Docker Image

Dockerfile

FROM ubuntu:18.04

ADD ./dyalog-unicode 17.0.34604 amd64.deb /

ADD /myapp/v7/test /myapp

RUN dpkg -i /dyalog*.deb

RUN git clone https://github.com/dyalog/JSONServer /JSS
ENV RIDE_INIT=""SERVE:*:4502"

ENV CodelLocation=/myapp

CMD dyalog /JSS/JSONServer.dws

docker build —t myco/myapp-test .

W
(0}
0]
(0}
mui®
<

ey

Building and Running the Docker Image

Dockerfile

FROM ubuntu:18.04

ADD ./dyalog-unicode 17.0.34604 amd64.deb /

ADD /myapp/v7/test /myapp

RUN dpkg -i /dyalog*.deb

RUN git clone https://github.com/dyalog/JSONServer /JSS
ENV RIDE_INIT=""SERVE:*:4502"

ENV CodelLocation=/myapp

CMD dyalog /JSS/JSONServer.dws

docker build —t myco/myapp-test .

docker run syntax & common switches

IMAGE [COMMAND] [ARG...]

docker run

docker run myco/myapp-test
Switth |Deseripon

-p hhhh:cccc Map TCP port cccc in container to hhhh on host

-e name=value Set environment variable inside the container
-v /hfolder:/cfolder

Mount /hfolder in container as /cfolder
-t Allocate a pseudo-TTY
—1 Keep stdin open even if not attached

—=rm Discard changes when container terminates

Distributing the Image: DockerHub

[
Build (I I [’
docker build —t myco/myapp-test .) O D

(¢]

-

Distributing the Image: DockerHub

[
Build (I I [’
docker build —t myco/myapp-test .) O D

(¢]

-

We can "push" the image to DockerHub:

Distributing the Image: DockerHub

[
Build (I I [’
docker build —t myco/myapp-test .) O D

(¢]

-

We can "push" the image to DockerHub:

Push

docker login
docker push myco/myapp-test

Distributing the Image: DockerHub

[
Build (I I [’
docker build —t myco/myapp-test .) O D

(¢]

-

We can "push" the image to DockerHub:

Push
docker login

docker push myco/myapp-test

Now, the following will work on ANY computer that has Docker installed
(assuming myco/myapp-test is a PUBLIC container)

docker run -p 8081:8080 -v /somefolder:/data —e DEBUG=1 myco/myapp-test

Distributing the Image: DockerHub

Il
Build (T T
docker build —t [myco/jnyapp-test . —.)ﬂ]]]ﬂll]]]]]ﬂ]]]]]ﬂ]]]]]ﬂ]]]]]

(¢]

-

We can "push" the image to DockerHub:

Push
docker login

docker push yapp—test

Now, the following will work on ANY computer that has Docker installed
(assuming myco/myapp-test is a PUBLIC container)

docker run -p 8081:8080 -v /somefolder:/data —e DEBUGzlyapp—test

@ Docker Hub x +
=, & https://hub.docker.com/u/d

O mkromberg (Maorte D AP

Q Search

* & Reposilories

Repositories

public

¥ #dyalog

Interpracess (

B The ARl

Orchard |

n 2 Notifications

Dashboard Explore

Organizations

Create £ mkrom berg

tories: Using 0 of 0

DETAILS

Public Dyalog Containers

These currently for experimentation only and are based on
UNSUPPORTED NON-COMMERCIAL Dyalog 17.1.

All run full development interpreters in interactive terminal mode.

dyalog/dyalog:17.1-dbg

e Linux + Dyalog APL Interpreter
dyalog/jsonserver:dbg

* dyalog:17.1-dbg + JSONServer
dyalog/miserver:dbg

 dyalog:17.1-dbg + MiServer

dyalog/jupyter

* dyalog:17.1-dbg + Python, Anaconda & Jupyter Notebook

Dyalog Scripts

o

Dyalog Scripts

dyalog-c folder [rideport]
e Starts container dyalog/dyalog:17.1-dbg

folder isalways mounted as Zapp in the container

rideport is the optional port that RIDE can be attached to W

Dyalog Scripts

dyalog-c folder [rideport]
e Starts container dyalog/dyalog:17.1-dbg

Jjsonserver-c folder [[httpport] [rideport]]
e Starts container dyalog/jsonserver-dbg

folder isalways mounted as Zapp in the container
httpport is the application port that is always exposed by json- & mi-servers
rideport is the optional port that RIDE can be attached to

Dyalog Scripts

dyalog-c folder [rideport]
e Starts container dyalog/dyalog:17.1-dbg

Jjsonserver-c folder [[httpport] [rideport]]
e Starts container dyalog/jsonserver-dbg

miserver-c folder [[httpport] [rideport]]
* Starts container dyalog/miserver-dbg

folder isalways mounted as Zapp in the container
httpport is the application port that is always exposed by json- & mi-servers
rideport is the optional port that RIDE can be attached to

Dyalog Scripts

dyalog-c folder [rideport]
e Starts container dyalog/dyalog:17.1-dbg

Jjsonserver-c folder [[httpport] [rideport]]
e Starts container dyalog/jsonserver-dbg

miserver-c folder [[httpport] [rideport]]
* Starts container dyalog/miserver-dbg

jupyter-c [folder[/notebook]] [httpport]
e Starts container dyalog/jupyter (Jupyter notebook server)

folder isalways mounted as Zapp in the container
httpport is the application port that is always exposed by json- & mi-servers
rideport is the optional port that RIDE can be attached to

_|jsonserver-cbat - Notepad

File Edit Format View Help

REM @ECHO OFF

SETLOCAL

REM Start JSONServer Container

REM Usage jsonserver-c directory [rideport]

SET pname=%~0

IF "%1"=="" (GOTO USAGE) ELSE (SET folder="%~f1")
IF "%2"=="" (SET httpport=8080) ELSE (SET httpport=%2)
IF NOT EXIST %folder% (GOTO NOTEXIST) ELSE (
IF %3=="" (
START docker run -p %httpport%:8080 -it -v %folder%:/app dyalog/jsonserver:dbg
) ELSE (

START docker run -p %httpport%:8080 -p %3:4502 -it -v Z%folder%:/app dyalog/jsonserver:dbg
)
IF NOT %ERRORLEVEL%==0 (GOTO Exit) ELSE (
START http://localhost:%httpport%
goto DONE
)
)

:ERROR

ECHO "%pname% Docker returned error %ZERRORLEVEL%"
goto DONE

J jsonserver-c - Notepad

File Edit Format View Help

#1/bin/bash
pname="basename $0°

0]; then echo "Usage: $pname directory [httpport] [rideport]" >8 2 ; exit 128 ; fi
| -d $1]; then echo "$pname: \"$1\" does not exist" >&2 ; exit 1; fi

folder="readlink -e $1°
httpport="${2:-8080}"
if [-z $3] ; then rideport="" ; else rideport="-p $3:4502 "; fi

(sleep 3 ;3 firefox http://localhost:$httpport 2>/dev/null) &

docker run $rideport -p $httpport:8080 -it -v $folder:/app dyalog/jsonserver:dbg

e=$?
if [$¢ != 0] ; then echo "$pname: docker returned error code $e" ; exit 1; fi

Exercise 3

Wherever you have docker installed:

git clone https://github.com/mkromberg/dyalog-docker

Depending on your OS, try one of:

dyalog-docker/winscripts/dyalog-c /yourapp 4502
dyalog-docker/bashscripts/dyalog-c /yourapp 4502

Verify that you can connect RIDE to localhost:4502 W

Exercise 4

Use the jsonserver-c script to launch your folder as a
containerized JSONServer:

Jjsonserver-c /yourapp 8080 4502

Verify that you can connect a browser to both ports and

call your function from the browser front-end (using the
data you noted in Exercise 1)

o

Exercise 5

* View the docker cheat sheet:
https://github.com/wsargent/docker-cheat-sheet

* Experiment with
docker ps
docker stop image_name

* If you don't Joff from RIDE, you will need docker
stop to stop your continers
_—%‘7‘31@5.

https://github.com/wsargent/docker-cheat-sheet

Benefits of Dyalog's Public Containers

Without Public Containers

FROM ubuntu:18.04

ADD ./dyalog-unicode_17.0.34604_amd64.deb /

RUN dpkg -1 /dyalog*.deb

RUN git clone https://github.com/dyalog/JSONServer /JSS
ADD /myapp/v7/test /myapp

ENV RIDE_INIT=""SERVE:*:4502"

ENV CodelLocation=/myapp

CMD dyalog /JSS/JSONServer.dws

77’@
ey

W
(0}

0]

(0}
—@
<

Benefits of Dyalog's Public Containers

FROM ubuntu:18.04

ADD ./dyalog-unicode 17.0.34604 amd64.deb /

RUN dpkg -1 /dyalog*.deb

RUN git clone https://github.com/dyalog/JSONServer /JSS
ADD /myapp/v7/test /myapp

ENV RIDE_INIT=""SERVE:*:4502"

ENV CodelLocation=/myapp

CMD dyalog /JSS/JSONServer.dws

With Public Containers

FROM dyalog/jsonserver -dbg
ADD /myapp/v7/test /myapp
ENV RIDE_INIT="SERVE:*:4502"

ENV CodelLocation=/myapp
CMD dyalog /JSS/JSONServer.dws

DVYALOC

Benefits of Dyalog's Public Containers

Without Public Containers

FROM ubuntu:18.04
ADD ./dyalog-unicode 17.0.34604 amd64.deb /
RUN dpkg -1 /dyalog*.deb

RUN git clone https://github.com/dyalog/JSONServer /JSS
ADD /myapp/v7/test /myapp

ENV RIDE_INIT="SERVE:*:4502"

ENV CodelLocation=/myapp

CMD dyalog /JSS/JSONServer .dws

With Public Containers

FROM dyalog/jsonserver -dbg
ADD /myapp/v7/test /myapp

ENV RIDE_INIT="SERVE:*:4502"
ENV CodelLocation=/myapp

CMD dyalog /JSS/JSONServer.dws

Or even without a Dockerfile
docker run —p 8080:8080 —p 4502:4502 —v /myapp/v7/test:/myapp

—e RIDE_INIT="SERVE:*:4502" —e CodelLocation=/myapp dyalog/jsonserver
¥ #dyalog18 Cloud Computing with APL

43

DVYALOC
JSONServer

FROM dyalog/jsonserver :dbg

ENV
ENV
ENV

ENV
ENV
ENV
ENV
ENV

ADD

ADD

CMD

MAXWS=256M
CodeLocation=/app
Port=8080

Secure=1

SSLValidation=64

RootCertDir=/certs/ca
ServerCertFile=/certs/server/myserver-cert.pem
ServerKeyFile=/certs/server/myserver-key.pem

test-certs /certs

backend /Zapp

dyalog /JSONServer/Distribution/JSONServer.dws

Runs ZodiacService backend as a secure service

¥ #dyalog18 Cloud Computing with APL

44

DVYALOC

JSONServer

ENV
ENV
ENV

ENV
ENV
ENV
ENV
ENV

ADD

ADD

CMD

FROM dyalog/jsonserver :dbg

MAXWS=256M
CodeLocation=/app
Port=8080

Secure=1

SSLValidation=64

RootCertDir=/certs/ca
ServerCertFile=/certs/server/myserver-cert.pem
ServerKeyFile=/certs/server/myserver-key.pem

test-certs /certs

backend /Zapp

dyalog /JSONServer/Distribution/JSONServer.dws

Runs ZodiacService backend as a secure service

¥ #dyalog18 Cloud Computing with APL

45

JSONServer

APL+JSONServer included FROM dyalog/jsonserver:dbg

ENV

Basic JSONServer ENV
ENV

Settings

ENV
ENV
ENV
ENV
ENV

ADD

ADD

CMD

MAXWS=256M
CodelLocation=/app
Port=8080

Secure=1

SSLValidation=64

RootCertDir=/certs/ca
ServerCertFile=/certs/server/myserver-cert._pem
ServerKeyFile=/certs/server/myserver-key.pem

test-certs /certs

backend /Zapp

dyalog /JSONServer/Distribution/JSONServer.dws

Runs ZodiacService backend as a secure service

JSONServer

Basic JSONServer
Settings

Secure Options

FROM dyalog/jsonserver:dbg

ENV
ENV
ENV

ENV
ENV
ENV
ENV
ENV

ADD

ADD

CMD

MAXWS=256M
CodelLocation=/app
Port=8080

Secure=1

SSLValidation=64

RootCertDir=/certs/ca
ServerCertFile=/certs/server/myserver-cert._pem
ServerKeyFile=/certs/server/myserver-key.pem

test-certs /certs

backend /Zapp

dyalog /JSONServer/Distribution/JSONServer.dws

Runs ZodiacService backend as a secure service

JSONServer

Basic JSONServer
Settings

Secure Options

Add Certificates

FROM dyalog/jsonserver:dbg

ENV
ENV
ENV

ENV
ENV
ENV
ENV
ENV

ADD

ADD

CMD

MAXWS=256M
CodelLocation=/app
Port=8080

Secure=1

SSLValidation=64

RootCertDir=/certs/ca
ServerCertFile=/certs/server/myserver-cert._pem
ServerKeyFile=/certs/server/myserver-key.pem

test-certs /certs

backend /Zapp

dyalog /JSONServer/Distribution/JSONServer.dws

Runs ZodiacService backend as a secure service

JSONServer

APL+JSONServer included

Basic JSONServer
Settings

Secure Options

Add Certificates

Application Code

FROM dyalog/jsonserver:dbg

ENV
ENV
ENV

ENV
ENV
ENV
ENV
ENV

ADD

ADD

CMD

MAXWS=256M
CodelLocation=/app
Port=8080

Secure=1

SSLValidation=64

RootCertDir=/certs/ca
ServerCertFile=/certs/server/myserver-cert._pem
ServerKeyFile=/certs/server/myserver-key.pem

test-certs /certs

backend /Zapp

dyalog /JSONServer/Distribution/JSONServer.dws

Runs ZodiacService backend as a secure service

JSONServer

APL+JSONServer included

Basic JSONServer
Settings

Secure Options

Add Certificates

Application Code

Start JSONServer

FROM dyalog/jsonserver:dbg

ENV
ENV
ENV

ENV
ENV
ENV
ENV
ENV

ADD

ADD

CMD

MAXWS=256M
CodelLocation=/app
Port=8080

Secure=1

SSLValidation=64

RootCertDir=/certs/ca
ServerCertFile=/certs/server/myserver-cert._pem
ServerKeyFile=/certs/server/myserver-key.pem

test-certs /certs

backend /Zapp

dyalog /JSONServer/Distribution/JSONServer.dws

Runs ZodiacService backend as a secure service

File Edit Selection View Go Debug Terminal Help ® GetZodiacData.dyalog - Visual Studio Code — O X

I:—..\, EXPLORER = GetZodiacData.dyalog ®
1
4 OPEN EDITORS 1 UNSAVED 1 | ZodiacData<req GetZodiacData dummyl
_ . 2 A Ignore argument, return Zodiac Data
p ® = GetZodiacData.dyalog C\... U 3
4 NO FOLDER OPENED - 'ZodiacData' [INS ''

5 ZodiecData.signs+'Capricorn' 'Aquarius' 'Pisces' 'Aries' 'Taurus' 'Gemini' 'Cancer' 'L

oo You have not yet opened a folder. 6 ZodiacData.starts«119 218 320 419 520 620 722 822 922 1022 1121 1221
7

Open Folder 8 ZodiacData.(id ca)«#.(=req.PeerCert).Formatted.(Subject Issuer)

9

"

Pmaster* © QO0AO0 In1,Col36 Spaces:4 UTF-8withBOM CRLIF APL @ A

File Edit Selection View Go Debug Terminal Help ® GetZodiacData.dyalog - Visual Studio Code — O X

I:—..\, EXPLORER = GetZodiacData.dyalog ®
1
4 OPEN EDITORS 1 UNSAVED 1 | ZodiacData<req GetZodiacData dummyl
_ . 2 A Ignore argument, return Zodiac Data
p ® = GetZodiacData.dyalog C\... U 3
4 NO FOLDER OPENED - 'ZodiacData' [INS ''

5 ZodiecData.signs+'Capricorn' 'Aquarius' 'Pisces' 'Aries' 'Taurus' 'Gemini' 'Cancer' 'L

oo You have not yet opened a folder. 6 ZodiacData.starts«119 218 320 419 520 620 722 822 922 1022 1121 1221
7

Open Folder 8 ZodiacData.(id ca)«#.(=req.PeerCert).Formatted.(Subject Issuer)

9

"

Pmaster* © QO0AO0 In1,Col36 Spaces:4 UTF-8withBOM CRLIF APL @ A

Exercise 6

* Add your own function to the "secure" service
* Have it use certificate information in some way
* Build it

* Run it, exposing port 8080 and 4502

* Experiment with

docker container Is _)
docker container rm image_1id

_—%‘7‘31@5.

Exercise 7 / Demo

* Load, modify and run the SSHDemo
function.

o

Ideas for Future Containers

Runtime and Development/Debug versions of all
containers.

dyalog/tamstat
* Runs HTML/JS version of Tamstat "anywhere"
* Looks for data in mapped folder /data

dyalog/isolate
® Runs an isolate server

* If /workspace.dws is found,
each isolate will be intialised from it

« /i1solate.config will set security rules and other options

	Slide Number 1
	Why Containers ?
	Why Containers ?
	Linux
	Linux
	Linux
	Linux
	Docker for Windows
	Slide Number 9
	Slide Number 10
	Installing Docker + docker-compose
	Container Basics
	Container Basics
	Container Basics
	Container Basics
	Container Basics
	Container Basics
	Container Basics
	Container Basics
	Container Basics
	Building and Running the Docker Image
	Building and Running the Docker Image
	Building and Running the Docker Image
	docker run syntax & common switches
	Distributing the Image: DockerHub
	Distributing the Image: DockerHub
	Distributing the Image: DockerHub
	Distributing the Image: DockerHub
	Distributing the Image: DockerHub
	Slide Number 30
	Public Dyalog Containers
	Dyalog Scripts
	Dyalog Scripts
	Dyalog Scripts
	Dyalog Scripts
	Dyalog Scripts
	Slide Number 37
	Slide Number 38
	Exercise 3
	Exercise 4
	Exercise 5
	Benefits of Dyalog's Public Containers
	Benefits of Dyalog's Public Containers
	Benefits of Dyalog's Public Containers
	Secure JSONServer
	Secure JSONServer
	Secure JSONServer
	Secure JSONServer
	Secure JSONServer
	Secure JSONServer
	Secure JSONServer
	Slide Number 52
	Slide Number 53
	Exercise 6
	Exercise 7 / Demo
	Ideas for Future Containers

