
© 2019

WEB ENABLING SIMCORP
DIMENSION
DYALOG ’19, ELSINORE

STIG NIELSEN, LEAD DEVELOPER, SIMCORP

Presenter
Presentation Notes
SimCorp Dimension is an Investment Management System, for larger banks, insurance companies, and pension funds – companies with lots of money they need to invest. 16.000 active daily users.
1500 employees. Headquarter in Copenhagen, dev. Branches in Germany, UK and Ukraine, offices all over the world.

© 2019© 2019

AGENDA

2

© 2019© 2019

AGENDA

2

• Why WEB/Cloud?

© 2019© 2019

AGENDA

2

• Why WEB/Cloud?

• The solution #1

© 2019© 2019

AGENDA

2

• Why WEB/Cloud?

• The solution #1

• The solution #2

© 2019© 2019

AGENDA

2

• Why WEB/Cloud?

• The solution #1

• The solution #2

• Model driven UI

© 2019© 2019

WHY WEB/CLOUD

3

Presenter
Presentation Notes
So why cloud, now we have a nice system that have worked for the last 25 years?

© 20194

KEY DRIVERS FOR CLOUD ADOPTION

REDUCED RISK
Hedge risk by
transferring data
to the cloud

BUSINESS
CONTINUITY
Fault-tolerant approach
to continuous delivery

COLLABORATION
Increased synergies
for Business, IT &
Operations

COST SAVINGS
Capital expenses
converted to
operating expenses

SCALABILITY
Scale-up or down on-
demand, as configured
or scheduled

TIME TO MARKET
Shortened considerably,
including time to
provision/deploy

Presenter
Presentation Notes
First of all – customers are demanding it. They want to buy services, not software. They want to focus on their business.
No hardware in basement -> you rent as you go.
Unlimited resources – IF you can make use of them!
You can release very fast – IF you have both the process and technical capabilities to do so with high quality. (CI/CD).
Cloud providers invest heavily in security and you obtain a head start by using their setup, recommendations and services.
Release of new features doesn’t have to wait for an on-premise upgrade.

© 2019A
Z

U
R

E
 S

E
R

V
IC

E
S

Presenter
Presentation Notes
Lots of services out there we can integrate to and piggyback on.
Then we have Docker and Kubernetes. Orchestration, logging and monitoring, load balancer etc.
You can concentrate on making software (or rather services), and not spend resources on orchestration.
All you need is getting the CI/CD pipelines up and running – AND lots of automatic tests!

© 20196

FROM 2-TIER TO 3-TIER
TRANSFORMING

Server/Service transformation = Business Logic runs here

Typical 2-tier deployment. Typical 3-tier solution

Powerful PC Powerful PC Powerful PC

Database

Powerful PC

Automated batch job
(One job at a time)

Client

X 999

Device/Service

X 999

Powerful Server Database

Automated
batch job

X 999

Protected

Unsafe

Presenter
Presentation Notes
First step, which is in progress, is to transform our current 2-tier solution into 3-tier
Business code at end user pc’s.
Lots of power locally.
Local database connection.
Hard to secure - Citrix is current security story.
Can’t do Citrix on devices.

3-tier: Client, assume hacked
Powerful server, to be shared among all, scale vertically (many) or horizontally (big)
Many different kinds of devices.
3-tier is simply a prerequisite for going into the cloud.

© 2019© 2019

THE SOLUTION #1

7

Presenter
Presentation Notes
Notice that we have both APL and C# applications, and I will only focus on the APL part.

© 20198

LAYERED APPLICATION ARCHITECTURE - APL
COMPONENTS

GUI Business

Application
Business

Internal
Application
Framework

Internal GUI
FrameworkGUI Framework

Application
Framework

Core Business Core Framework

• APL functions nicely ordered in modules

• Enforced rules on how modules can call
between each other

Presenter
Presentation Notes
Original architectual drawing

© 20198

LAYERED APPLICATION ARCHITECTURE - APL
COMPONENTS

GUI Business

Application
Business

Internal
Application
Framework

Internal GUI
FrameworkGUI Framework

Application
Framework

Core Business Core Framework

• APL functions nicely ordered in modules

• Enforced rules on how modules can call
between each other

• Should be rather easy to turn groups of
modules into micro services

© 20199

LAYERED APPLICATION ARCHITECTURE - APL
COMPONENTS

• Well, a few more arrows have been
added over time…

Presenter
Presentation Notes
Adjusted to the real world..!
…and of course you can decorate your function with a declaration, that you know what you’re doing and is allowed to break the rule.

© 2019

SOME FIGURES

• 2,500,000 lines of APL code

• 86,800 (trad) functions

• Organised in 5,500 modules

10

Presenter
Presentation Notes
No comments nor blank lines included!
This is just a part of our system – there are more lines of C# code!
Then we had a look at connections between modules to get a picture of which chucks of business code that could be separated as a service on its own…!

© 2019

APL MODULES – DEPENDENCY GRAPH;-!

11

Presenter
Presentation Notes
We analysed inter-module calls and used a graph tool to visualise this!
To be able to componentise the APL modules, connections between nodes should be limited.
We must face the fact that we’re dealing with a huge monolith!

© 2019© 2019

THE SOLUTION #2

12

© 2019© 2019

THE SOLUTION #2

12

WELCOME TO THE REAL WORLD

© 201913

LIFT AND SHIFT - UNIFIED PLATFORM
SIMCORP DIMENSION - ENABLEMENT

• We will enable SimCorp Dimension (SCD) to become
a 3-tier Cloud Service (SaaS), using a traditional
Lift and Shift pattern.

• We will carry along all current business
logic and current functionality

• We will enable new scenarios using Cloud Services

UNIFIED PLATFORM

User
Authentication

Session / State
Management

Managed
Database API…Certificate

Secret Store
UI / Client
Connector

Refactored
Code

C#
Code

APL
Code

SimCorp Dimension

…

Presenter
Presentation Notes
Incapsulate our APL IP inside a new platform (coded in C# - async/await), designed on the outside for the cloud world, on the inside communicating with a heavily stateful monolith.
From then on, we can start to move parts to modules designed for the cloud
In other words - Fake it till you make.
We have approximately 3000 APL applications, most very simply configuration forms, but also very complex forms.

© 201914

THE APL PART OF THE SYSTEM AS OF TODAY
ONE PROCESS CONTROLLED FROM APL

Launch.exe

Presenter
Presentation Notes
Launch: Set configuration in registry. Hook up to inter process comm. Start dyalog.exe.
Still using AP – but not for long!
Remoting communication between APL and C# - dev. Experience
APL and C# marshalling is out of process.

© 201914

THE APL PART OF THE SYSTEM AS OF TODAY
ONE PROCESS CONTROLLED FROM APL

Launch.exe

APL (dyalog.exe)

C#External

© 201914

THE APL PART OF THE SYSTEM AS OF TODAY
ONE PROCESS CONTROLLED FROM APL

Launch.exe

APL (dyalog.exe)

C#External

Auxiliary Processor

© 201914

THE APL PART OF THE SYSTEM AS OF TODAY
ONE PROCESS CONTROLLED FROM APL

Launch.exe

APL (dyalog.exe)

C#External

Auxiliary Processor

C#
Marshaller

© 201915

THE SYSTEM AS OF TOMORROW
3-TIER APL STACK – APL HOSTED INSIDE .NET

.NET CLR

APL (dyalog.dll)

In-proces

Presenter
Presentation Notes
An OO model is made as the interface to APL applications
Our APL code is NOT thread safe
By copying the dws into the WS, we can continue to work on the 2-tier platform, using the exact same code on the 3-tier platform.

© 201915

THE SYSTEM AS OF TOMORROW
3-TIER APL STACK – APL HOSTED INSIDE .NET

.NET CLR

APL (dyalog.dll)

Generic .NET API

In-proces

© 201915

THE SYSTEM AS OF TOMORROW
3-TIER APL STACK – APL HOSTED INSIDE .NET

.NET CLR

APL (dyalog.dll)

Generic .NET API

APL Bootstrapper

In-proces

© 201915

THE SYSTEM AS OF TOMORROW
3-TIER APL STACK – APL HOSTED INSIDE .NET

.NET CLR

APL (dyalog.dll)

Generic .NET API

APL Bootstrapper

Bootstrapper
• ⎕CY ”dws”
• Attach to shared code file
• Inject .NET managers
• Setup conf. reader (as

there are no configurations
in registry!)

• Run ⎕LX!

In-proces

© 201915

THE SYSTEM AS OF TOMORROW
3-TIER APL STACK – APL HOSTED INSIDE .NET

.NET CLR

APL (dyalog.dll)

Generic .NET API

Application .NETAPL Bootstrapper

Bootstrapper
• ⎕CY ”dws”
• Attach to shared code file
• Inject .NET managers
• Setup conf. reader (as

there are no configurations
in registry!)

• Run ⎕LX!

In-proces

© 201915

THE SYSTEM AS OF TOMORROW
3-TIER APL STACK – APL HOSTED INSIDE .NET

.NET CLR

APL (dyalog.dll)

Generic .NET API

Application .NETAPL Bootstrapper

Bootstrapper
• ⎕CY ”dws”
• Attach to shared code file
• Inject .NET managers
• Setup conf. reader (as

there are no configurations
in registry!)

• Run ⎕LX!
APL Application API

In-proces

© 201915

THE SYSTEM AS OF TOMORROW
3-TIER APL STACK – APL HOSTED INSIDE .NET

.NET CLR

APL (dyalog.dll)

Generic .NET API

Application .NETAPL Bootstrapper

Bootstrapper
• ⎕CY ”dws”
• Attach to shared code file
• Inject .NET managers
• Setup conf. reader (as

there are no configurations
in registry!)

• Run ⎕LX!

Application
• Launch APL application
• Set/get data
• Execute commands
• Get IU layout
• Get data schema

APL Application API

In-proces

© 201916

THE SYSTEM AS OF TOMORROW
3-TIER APL STACK – MULTIPLE APL INSTANCES

C#APL Application .NET API

APL

Presenter
Presentation Notes
We need our cloud/3-tier platform to serve multiple concurrent sessions.
Each APL session is very stateful and contains lots of caches – static and dynamic.

© 201916

THE SYSTEM AS OF TOMORROW
3-TIER APL STACK – MULTIPLE APL INSTANCES

C#APL Application .NET API

APL APL APL

© 201916

THE SYSTEM AS OF TOMORROW
3-TIER APL STACK – MULTIPLE APL INSTANCES

C#APL Application .NET API

APL APL APL
APL Shared

© 201916

THE SYSTEM AS OF TOMORROW
3-TIER APL STACK – MULTIPLE APL INSTANCES

C#APL Application .NET API

APL APL APL

APL Shared

© 201916

THE SYSTEM AS OF TOMORROW
3-TIER APL STACK – MULTIPLE APL INSTANCES

C#APL Application .NET API

APL APL APL

APL Shared
• Dyalog engaged in hosting

multiple in-proces APL instances.
• One user session per APL

instance.
• We expect to do significant work

on performance and memory
footprint.

• Where possible, also share
between APL and C# (e.g. data
dictionary and other static
information)

© 201917

TARGET SERVICE ARCHITECTURE

UNIFIED PLATFORM

Session
Management

User
Authentication

State
Management

Managed
Database API…Certificate

Secret Store

C#
New

Applications

UI
Client API

C#
Framework

Editorlist

”Native”
C#

Applications

SHARED APL

WS
1

SCD
APL
Code

WS
2

SCD
APL
Code

API API

Bridge to C#

C#
Refactored
Applications

Service Platform version 2
Platform

Infrastructure
(Azure /

OnPrem)

© 201918

3-TIER ARCHITECTURE – APL PART

Good old APL FW
(Native APL)

APL O
O

P
(Bootstrapper)

Client API
Service (C#)

APL Application API

APL interface .NET interface

© 201918

3-TIER ARCHITECTURE – APL PART

Good old APL FW
(Native APL)

APL O
O

P
(Bootstrapper)

Client API
Service (C#)

APL Application API

APL interface .NET interface

You can still develop the 2-tier

© 2019© 2019

LET’S SEE SOME CODE!

19

Presenter
Presentation Notes
Show AplBootstrapper.dyalog + build.bat
TeamCity as continuous integration tool.

© 2019© 2019

MODEL DRIVEN UI

20

Presenter
Presentation Notes
So how will we make our existing applications appear on a separate front-end?

© 2019

MODEL DRIVEN UI

• On the APL side, we are so lucky that all our forms are described in
a descriptive “language”, or rather as a model

• So the transformation from APL UI to models is rather straight
forward

• We have chosen JSONForms (https://jsonforms.io/) as our
reference, but probably not our target platform

21

Presenter
Presentation Notes
So the model driven approach is not a new thing, as was used as the way to go for APL in SimCorp in mid 90’es
Unfortunately this was not chosen for the C# framework!

https://jsonforms.io/

© 201922

LAYOUT

Presenter
Presentation Notes
Here is an example of a form we use as our first front-to-back pilot project.

© 201923

LAYOUT

• Layout (called UI schema)

• How the data schema elements are positioned on
screen

• Absolute positions on existing APL forms are
transformed into relative positions on the fly

• Each control refer to an element in the
DataSchema

• DataSchema holds further information, e.g. data
type, max length, etc.

© 2019© 2019

LET’S SEE AN EXAMPLE!

24

Presenter
Presentation Notes
Show React example

© 2019

Tel:
Mobile:

Email:
www.simcorp.com

WANT TO KNOW MORE?

25

Stig Nielsen
Lead Developer

+45 20747509

stn@simcorp.com

© 2019

LEGAL NOTICE
The contents of this publication are for general information and illustrative purposes only and are used at the reader’s own risk. SimCorp uses all reasonable endeavors to ensure the accuracy of the information. However, SimCorp does not guarantee or warrant
the accuracy, completeness, factual correctness, or reliability of any information in this publication and does not accept liability for errors, omissions, inaccuracies, or typographical errors. The views and opinions expressed in this publication are not necessarily
those of SimCorp. © 2019 SimCorp A/S. All rights reserved. Without limiting rights under copyright, no part of this document may be reproduced, stored in, or introduced into a retrieval system, or transmitted in any form, by any means (electronic, mechanical,
photocopying, recording, or otherwise), or for any purpose without the express written permission of SimCorp A/S. SimCorp, the SimCorp logo, SimCorp ®, and SimCorp Services are either registered trademarks or trademarks of SimCorp A/S in Denmark and/or
other countries. Refer to www.simcorp.com/trademarks for a full list of SimCorp A/S trademarks. Other trademarks referred to in this document are the property of their respective owners.

	Slide Number 1
	AGENDA
	AGENDA
	AGENDA
	AGENDA
	AGENDA
	Slide Number 7
	Key drivers for cloud adoption
	Azure Services
	Transforming
	Slide Number 11
	Layered application architecture - APL components
	Layered application architecture - APL components
	Layered application architecture - APL components
	Some figures
	APL MODULES – Dependency Graph;-!
	Slide Number 17
	Slide Number 18
	SimCorp Dimension - ENablement
	The APL PART OF THE system as of today
	The APL PART OF THE system as of today
	The APL PART OF THE system as of today
	The APL PART OF THE system as of today
	The system as of tomorrow
	The system as of tomorrow
	The system as of tomorrow
	The system as of tomorrow
	The system as of tomorrow
	The system as of tomorrow
	The system as of tomorrow
	The system as of tomorrow
	The system as of tomorrow
	The system as of tomorrow
	The system as of tomorrow
	The system as of tomorrow
	Target Service architecture
	3-tier architecture – APL part
	3-tier architecture – APL part
	Slide Number 39
	Slide Number 40
	Model driven UI
	Layout
	Layout
	Slide Number 44
	Want to Know More?
	Slide Number 46

