
S ource
C ode
Management
with Git, SVN & Dyalog APL

Morten Kromberg

Adám Brudzewsky

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Source Code Management with Git, SVN & Dyalog APL#dyalog19

]Map

· ~ msg primes type
· ∇ Avg IsPrime Type
· Utils
· · ∇ Big NoZero

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Source Code Management with Git, SVN & Dyalog APL#dyalog19

C:>tree /f
C:.
│ Avg.aplf
│ IsPrime.aplf
│ msg.apla
│ primes.apla
│ type.apla
│ Type.aplf
│
└───Utils

Big.aplf
NoZero.aplf

Source Code Management with Git, SVN & Dyalog APL#dyalog19

C:>tree /f
C:.
│ Avg.aplf
│ IsPrime.aplf
│ msg.apla
│ primes.apla
│ type.apla
│ Type.aplf
│
└───Utils

Big.aplf
NoZero.aplf

Source Code Management with Git, SVN & Dyalog APL#dyalog19

C:>tree /f
C:.
│ Avg.aplf
│ IsPrime.aplf
│ msg.apla
│ primes.apla
│ type.apla
│ Type.aplf
│
└───Utils

Big.aplf
NoZero.aplf

C:>tree /f
C:.
│ Avg.aplf
│ IsPrime.aplf
│ msg.apla
│ primes.apla
│ type.apla
│ Type.aplf
│
└───Utils

Big.aplf
NoZero.aplf

]Map

· ~ msg primes type
· ∇ Avg IsPrime Type
· Utils
· · ∇ Big NoZero

Source Code Management with Git, SVN & Dyalog APL#dyalog19

]LINK
]link -?

LINK User commands for namespace-directory synchronisation (see https://github.com/dyalog/link/wiki):

Add Associate item in linked namespace with new file/directory in corresponding directory

Break Break link between namespace and corresponding directory

Create Link a namespace with a directory (create one or both if absent)

Export Export a namespace to a directory (create the directory if absent); does not create a link

Expunge Erase item and associated file

GetFileName Return name of file associated with item

GetItemName Return name of item associated with file

Import Import a namespace from a directory (create the namespace if absent); does not create a link

List List active namespace-directory links

Refresh Fully synchronise namespace-directory content

Source Code Management with Git, SVN & Dyalog APL#dyalog19

]LINK.Create
]LINK.Create #.namespace /path

Linked: #.namespace ←→ /path

Source Code Management with Git, SVN & Dyalog APL#dyalog19

]LINK.Create
]LINK.Create #.namespace /path

Linked: #.namespace ←→ /path

3 ⎕MKDIR '/tmp/myapp/'

'dup←{⍵ ⍵}' ⎕NPUT '/tmp/myapp/dup.aplf'

]link.create myapp /tmp/myapp

Linked: #.myapp ←→ /tmp/myapp

Source Code Management with Git, SVN & Dyalog APL#dyalog19

]LINK.Add
]LINK.Add item

Added: #.item

Source Code Management with Git, SVN & Dyalog APL#dyalog19

]LINK.Add
]LINK.Add item

Added: #.item

myapp.myarray←⍳2 3

]link.add myapp.myarray

Source Code Management with Git, SVN & Dyalog APL#dyalog19

]LINK.Break
]LINK.Break #.namespace

Unlinked N items: #.namespace

Source Code Management with Git, SVN & Dyalog APL#dyalog19

]LINK.Break
]LINK.Break #.namespace

Unlinked N items: #.namespace

]link.break myapp

Source Code Management with Git, SVN & Dyalog APL#dyalog19

]LINK.Break
]LINK.Break #.namespace

Unlinked N items: #.namespace

]link.break myapp

]link.create myapp /tmp/newapp

Source Code Management with Git, SVN & Dyalog APL#dyalog19

]LINK.Break
]LINK.Break #.namespace

Unlinked N items: #.namespace

]link.break myapp

]link.create myapp /tmp/newapp

Source directory not found: C:\tmp\newapp

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Link wiki: github.com/Dyalog/link/wiki

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Link wiki: github.com/Dyalog/link/wiki

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Link wiki: github.com/Dyalog/link/wiki

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Link wiki: github.com/Dyalog/link/wiki

]LINK.Create #.ns /path/ns
⎕SE.Link.Create '#/ns' '/path/ns'

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Link wiki: github.com/Dyalog/link/wiki

⎕SE.UCMD'LINK.Create #.ns /path/ns'

]LINK.Create #.ns /path/ns
⎕SE.Link.Create '#/ns' '/path/ns'

Source Code Management with Git, SVN & Dyalog APL#dyalog19

]LINK.Create options

]LINK.Create #.namespace /path -options

]link.break myapp

]link.create myapp /tmp/newapp

Source directory not found: C:\tmp\newapp

Source Code Management with Git, SVN & Dyalog APL#dyalog19

]LINK.Create options

]LINK.Create #.namespace /path -options

]link.break myapp

]link.create myapp /tmp/newapp -source=ns

Linked: #.myapp ←→ /tmp/newapp

Source Code Management with Git, SVN & Dyalog APL#dyalog19

]LINK.Import
]LINK.Import #.namespace /path

Imported: #.namespace ← /path

Source Code Management with Git, SVN & Dyalog APL#dyalog19

]LINK.Import
]LINK.Import #.namespace /path

Imported: #.namespace ← /path

]link.import myapp /tmp/myapp

Source Code Management with Git, SVN & Dyalog APL#dyalog19

]LINK.List
]LINK.List

]LINK.List #.namespace

Source Code Management with Git, SVN & Dyalog APL#dyalog19

]LINK.List
]LINK.List

]LINK.List #.namespace

]link.list

Source Code Management with Git, SVN & Dyalog APL#dyalog19

]LINK.List
]LINK.List

]LINK.List #.namespace

]link.list

No active links

Source Code Management with Git, SVN & Dyalog APL#dyalog19

]LINK.List
]LINK.List

]LINK.List #.namespace

]link.list

Namespace Directory Items

#.test C:/tmp/test 7

S ource
C ode
Management
with Git[Hub] & Dyalog APL

Morten Kromberg

Adám Brudzewsky

Source Code Management with Git, SVN & Dyalog APL#dyalog19

SA1 – Part 2: Git (and GitHub)

Source Code Management with Git, SVN & Dyalog APL#dyalog19

SA1 – Part 2: Git (and GitHub)

 One of the most important benefits of

storing APL code in text files is that

standard Source Code Managament

systems apply to our source

Source Code Management with Git, SVN & Dyalog APL#dyalog19

SA1 – Part 2: Git (and GitHub)

 One of the most important benefits of

storing APL code in text files is that

standard Source Code Managament

systems apply to our source

 Git is the most popular SCM system today

Source Code Management with Git, SVN & Dyalog APL#dyalog19

SA1 – Part 2: Git (and GitHub)

 One of the most important benefits of

storing APL code in text files is that

standard Source Code Managament

systems apply to our source

 Git is the most popular SCM system today

 GitHub is a service that hosts Git

repositories and provides a web front end

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Git vs other SCM systems
 All modern SCMs use a strategy of only storing changes

each time a file is changed

 Git is a "distributed" SCM, different from "client-server"
SCMs like Subversion:

 Each user of a repository has a complete local copy of all
changes ever made to the repository

 (rather than a snapshot of the files at a point in time)

 This allows disconnected/remote use

 If more than one user modifies a file, files are "merged" if
Git can figure out how to do that, which usually means:

 The source files consists of lines of text

 No two users modified the same line of text

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Git vs GitHub

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Git vs GitHub
 Git is a source code management system that works on files

 Open source, invented by Linus Thorvalds (of Linux fame)

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Git vs GitHub
 Git is a source code management system that works on files

 Open source, invented by Linus Thorvalds (of Linux fame)

 GitHub is a web server/service that ...

 Hosts Git repositories

 Provides a web front end for them

 Allows local Git clients to synchronise cloud and local repos using
"pull" and "push" commands

 Manages Pull Requests (changes suggested by 3rd parties)

 The largest collection of source code in the world

 Now owned and run by Microsoft

 Free: unlimited private repos and limited private repos (pay for more)

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Our Workspace

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Our Workspace

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Exercise 1

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Exercise 1
1. Save myapp.dws to a folder called "myapp"

using]link.create

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Exercise 1
1. Save myapp.dws to a folder called "myapp"

using]link.create
2. Move the Utils folder out of myapp, so

that the two folders are siblings.

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Exercise 1
1. Save myapp.dws to a folder called "myapp"

using]link.create
2. Move the Utils folder out of myapp, so

that the two folders are siblings.

3. In a clear workspace, use]link.create to
recreate the original workspace structure.

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Exercise 1
1. Save myapp.dws to a folder called "myapp"

using]link.create
2. Move the Utils folder out of myapp, so

that the two folders are siblings.

3. In a clear workspace, use]link.create to
recreate the original workspace structure.

4. Write an APL function to call
⎕SE.Link.Create, in place of using user
commands

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Exercise 1 - Solutions

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Exercise 1 - Solutions
1.)load myapp

]link.create # c:\wherever\myapp –source=ns

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Exercise 1 - Solutions
1.)load myapp

]link.create # c:\wherever\myapp –source=ns
2. Use File Explorer to move Utils

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Exercise 1 - Solutions
1.)load myapp

]link.create # c:\wherever\myapp –source=ns
2. Use File Explorer to move Utils
3.]link.create Utils c:\wherever\Utils

]link.create # c:\wherever\myapp

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Exercise 1 - Solutions
1.)load myapp

]link.create # c:\wherever\myapp –source=ns
2. Use File Explorer to move Utils

3.]link.create Utils c:\wherever\Utils
]link.create # c:\wherever\myapp

4. ∇ Load;folder;opts
(opts←⎕NS '').source←'dir'
folder←'c:\wherever\'
opts ⎕SE.Link.Create 'Utils' (folder,'\Utils')
opts ⎕SE.Link.Create # (folder,'\myapp')

∇

Source Code Management with Git, SVN & Dyalog APL#dyalog19

git version and git config
 Try these comands, in order to…

 Check Git is installed

 (if not go sit next to someone who has it)

 Register your name & email (not mine!)

 Test the Git help system

C:\ git --version

git version 2.14.1.windows.1

C:\ git config --global user.name "Morten Kromberg"

C:\ git config --global user.email mkrom@dyalog.com

C:\ git config –list

C:\ git --help

C:\ git config --help

Source Code Management with Git, SVN & Dyalog APL#dyalog19

git init
git init turns a directory into a Git repository

 It does this by creating a hidden directory named
.git within your directory

 To make it a normal repository again, simply delete
the .git folder

Exercise 2:

 Use git init to turn your myapp directory into a
git repository

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Source Code Management with Git, SVN & Dyalog APL#dyalog19

git status

git status gives a brief report about the current state

of your repository

 The current branch (more about branches soon)

 Changes made to tracked files since the last commit

 Any untracked files in the directory

Exercise 3

 Try git status on your new repo

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Source Code Management with Git, SVN & Dyalog APL#dyalog19

git add (and git rm)
git add <file> stages a file, so that it will be in the next commit.

 New / Changed files are NOT staged by default

 (many GUI frontends will offer to do this for you)

 git add . will stage all files in the current directory

 git status will show you what you have done

 You can change files and repeatedly use git add to stage multiple changes

Exercise 4

 Use git add at least twice, to stage first one, then all the files in myapp

 Monitor your progress using git status

 Try git add --help, and git rm --help

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Source Code Management with Git, SVN & Dyalog APL#dyalog19

git commit –m "commit message"
Eventually, you will want to use git commit to integrate a
set of staged changes to the repository.

 You MUST provide a commit message using the –m switch
as in the title of this slide.

 Use meaningful commit messages, you will thank yourself
later. "First commit" is a meaningful message (this time)!

Exercise 5

 Use git commit to make the first commit

 Return to APL and edit one of the functions in #
 Use git status, git add, git commit to do the

right thing

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Source Code Management with Git, SVN & Dyalog APL#dyalog19

git log
git log allows you to view the commit log

 You can see the last n entries, filter by
date/time, author, and many other criteria

 I found www.thegeekstuff.com/2014/04/git-log

Exercise 6

 Use git log to examine the log and filter it in
various ways.

 Use git log --stat and git log -p to
look at the actual changes (aka the "diffs")

https://www.thegeekstuff.com/2014/04/git-log/

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Source Code Management with Git, SVN & Dyalog APL#dyalog19

]tohex 'UTF-8' ⎕UCS '←'
E2 86 90

]tohex 'UTF-8' ⎕UCS '⍝'
E2 8D 9D

]tohex 'UTF-8' ⎕UCS '⍵'
E2 8D B5

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Time to Consider GUI FrontEnds?

 Git GUI

 VS Code

 There are lots of others

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Git GUI

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Git GUI

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Git GUI

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Git GUI

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Git GUI

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Git GUI

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Git GUI

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Git GUI

Ugh – "raw" UTF-8

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Branches

Branches allow you to

create environments in

which changes can be

made and tracked – without

interfering with other uses

of the code.

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Git Tutorials

 Learn Git in 20 Minutes

youtu.be/IHaTbJPdB-s by Web Dev Simplified

 Git Tutorial for Beginners: Command-Line Fundamentals

youtu.be/HVsySz-h9r4 by Corey Schafer

https://youtu.be/IHaTbJPdB-s
https://youtu.be/HVsySz-h9r4

Source Code Management with Git, SVN & Dyalog APL#dyalog19

git branch | git checkout | git merge

Source Code Management with Git, SVN & Dyalog APL#dyalog19

git branch | git checkout | git merge
git branch branchname creates a branch, in

which you can develop new features or fixes
outside the "master"

Source Code Management with Git, SVN & Dyalog APL#dyalog19

git branch | git checkout | git merge
git branch branchname creates a branch, in

which you can develop new features or fixes
outside the "master"

 git checkout –b branchname is short-
hand for: git branch branchname

followed by: git checkout branchname

Source Code Management with Git, SVN & Dyalog APL#dyalog19

git branch | git checkout | git merge
git branch branchname creates a branch, in

which you can develop new features or fixes
outside the "master"

 git checkout –b branchname is short-
hand for: git branch branchname

followed by: git checkout branchname

Source Code Management with Git, SVN & Dyalog APL#dyalog19

git branch | git checkout | git merge
git branch branchname creates a branch, in

which you can develop new features or fixes
outside the "master"

 git checkout –b branchname is short-
hand for: git branch branchname

followed by: git checkout branchname

 When the new feature is complete,
git merge branchname is used to fold it

back (after switching back to master with
git checkout master)

Source Code Management with Git, SVN & Dyalog APL#dyalog19

git branch | git checkout | git merge
git branch branchname creates a branch, in

which you can develop new features or fixes
outside the "master"

 git checkout –b branchname is short-
hand for: git branch branchname

followed by: git checkout branchname

 When the new feature is complete,
git merge branchname is used to fold it

back (after switching back to master with
git checkout master)

Source Code Management with Git, SVN & Dyalog APL#dyalog19

git branch | git checkout | git merge
 Before you start the exercise: if you have VS Code or

similar, keep it open and watch what happens as you
make changes on the command line

 Also watch what happens inside the workspace as you
checkout different branches (assuming you have a link)

Exercise 6

 Use git checkout –b branchname to create a
branch, and make a couple of changes and commits.

 Merge the commits back into the master.

 Use git branch to verify the selected branch.

 Delete the branch using git branch –d branchname.

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Source Code Management with Git, SVN & Dyalog APL#dyalog19

git clone
 git init turns a local folder into a "repo"

 git clone makes a copy of a remote repo

Exercise: Clone the SA1-Utils repo

C:\D19\SA1> git clone https://github.com/Dyalog19/SA1-Utils Utils

Cloning into 'Utils'...

remote: Enumerating objects: 8, done.

remote: Counting objects: 100% (8/8), done.

remote: Compressing objects: 100% (6/6), done.

remote: Total 8 (delta 0), reused 4 (delta 0), pack-reused 0

Unpacking objects: 100% (8/8), done.

Source Code Management with Git, SVN & Dyalog APL#dyalog19

git pull and push

 After cloning, you work with the repo as if it were local.

 Note that git commit only changes your local copy of

the repository!

 Every now and again, you should

 git pull to merge changes made by others into your local copy

 git push to make your own commits available to others

 You should ALWAYS pull before you push!!!
(Many GUIs will not let you push before you pull.)

Source Code Management with Git, SVN & Dyalog APL#dyalog19

git pull and push
 The syntax is:

 origin is a reference to the remote repository

(the origin of the local copy)

 master is the name of the branch we are

working on

 All of this is easier if you use a GUI like VS Code

 You will need a GitHub user id to push

git pull origin master

git push origin master

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Merge conflicts

 Eventually, you will change the same line
of code that someone else did

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Resolving Merge Conflicts

 You would usually do one of:
 Delete lines <<<<<<< to =======

 Delete lines ======= to >>>>>>>

 … then commit and push

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Source Code Management with Git, SVN & Dyalog APL#dyalog19

If the file is being watched by Link,
"anything can happen" at this point

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Exercises

 Add a new function to Utils and push it to GitHub

 Collaborate with someone next to you, to make
conflicting changes to the same function

 Deal with the merge conflicts

 Make changes to two different lines of code and
note that auto-merge "usually works"

 (you may need to create a function with several lines
of code before this is reliable)

Source Code Management with Git, SVN & Dyalog APL#dyalog19

Git Tutorials

 Learn Git in 20 Minutes

youtu.be/IHaTbJPdB-s by Web Dev Simplified

 Git Tutorial for Beginners: Command-Line Fundamentals

youtu.be/HVsySz-h9r4 by Corey Schafer

https://youtu.be/IHaTbJPdB-s
https://youtu.be/HVsySz-h9r4

