JYALOC

Elsinore 2019

A Decade of APL Extensions
— Trains and High Rank Operations

Adam Brudzewsky - Marshall Lochbaum
Richard Park - Richard Smith - Nicolas Delcros

DVALOC

Function Trains

¥ #dyalogl9 A Decade of APL Extensions — Trains and High Rank Operations

DVYALOC

Function Trains: a bit of history

expression
TMN APL

f(g()) fgx
f(x) X g(x) (f x)xg X

¥ #dyalogl9 A Decade of APL Extensions — Trains and High Rank Operations

DVYALOC

Function Trains: a bit of history

expression composition
TMN APL TMN
f(g() fgx (f 2 9)(x)

f(x) X g(x) (f x)xg X

¥ #dyalogl9 A Decade of APL Extensions — Trains and High Rank Operations

DVALOC

Function Trains: a bit of history

expression composition
TMN APL TMN APL
f(g() fgx (Fog)(x) (foq) x

f(x) X g(x) (f x)xg X

¥ #dyalogl9 A Decade of APL Extensions — Trains and High Rank Operations

DVALOC

Function Trains: a bit of history

expression composition
TMN APL TMN APL
f(g() fgx (Fog)(x) (foq) x

f)xglx) (f x)xg x (fxg)x)

¥ #dyalogl9 A Decade of APL Extensions — Trains and High Rank Operations

DVALOC

Function Trains: a bit of history

expression composition
TMN APL TMN APL
f(g() fgx (Fog)(x) (foq) x

fO)xgl) (£ x)xg x (fxg)lx) (fxg) x

¥ #dyalogl9 A Decade of APL Extensions — Trains and High Rank Operations

DVALOC

Function Trains: a bit of history

expression composition
TMN APL TMN APL
f(g() fgx (Fog)(x) (foq) x

fx)+~glx) (f x)+g x (f+g)(x) (f3g) X

¥ #dyalogl9 A Decade of APL Extensions — Trains and High Rank Operations

DVALOC

Function Trains: a bit of history

expression composition
TMN APL TMN APL
f(g() fgx (Fog)(x) (foq) x

f)—gC) (£ x)-gx (-9 (f7g) x

¥ #dyalogl9 A Decade of APL Extensions — Trains and High Rank Operations

DVALOC

Function Trains: a bit of history

expression composition
TMN APL TMN APL
f(g() fgx (Fog)(x) (foq) x

fO)xgl) (£ x)xg x (fxg)lx) (fxg) x

¥ #dyalogl9 A Decade of APL Extensions — Trains and High Rank Operations

DVYALOC

Function Trains: valence

(+,-)2 A monadic train
2 2
3(+,-)2 A dyadic train
5 1
TMN APL TMN
342 = (f g h) < (f X g)(x)

¥ #dyalogl9 A Decade of APL Extensions — Trains and High Rank Operations

DVYALOC

Function Trains: in isolation

3 +,- 2 A not a train
1

3(+,-)2 A yes a train
5 1

¥ #dyalogl9 A Decade of APL Extensions — Trains and High Rank Operations

DVYALOC

Function Trains: in isolation

3 +,- 2 A not a train
1
3(+,-)2 A yes a train
5 1
f « +,- A train assignment
3 f 2 A train application
5 1

¥ #dyalogl9 A Decade of APL Extensions — Trains and High Rank Operations

DVYALOC

Function Trains: step-by-step evaluation

= (+# + #) 1 2 3 &4

¥ #dyalogl9 A Decade of APL Extensions — Trains and High Rank Operations

DVYALOC

Function Trains: step-by-step evaluation
& (+A +E) 1234

= (+# 1 2 3 4) =+ (1 2 3 k)

¥ #dyalogl9 A Decade of APL Extensions — Trains and High Rank Operations

DVYALOC

Function Trains: step-by-step evaluation
& (+A +E) 1234
& (441 234)+ (123 4)

= 10 = 4

¥ #dyalogl9 A Decade of APL Extensions — Trains and High Rank Operations

DVYALOC

Function Trains: step-by-step evaluation
& (+4 +#) 1234

& (441 234)+ (123 4)

= 10 + 4

= 2.5

¥ #dyalogl9 A Decade of APL Extensions — Trains and High Rank Operations

DVALOC

Example problem: Range

Write an (f g h) train that finds a numeric vector’s range by
subtracting the smallest element from the largest element.

Examples:

Range 3 1 4 15 9
8

¥ #dyalogl9 A Decade of APL Extensions — Trains and High Rank Operations

DVALOC

Example problem: Range

Write an (f g h) train that finds a numeric vector’s range by
subtracting the smallest element from the largest element.

Range « [/ - L/
Range 3 1 4 15 9

([/-L/) 27 18 28

¥ #dyalogl9 A Decade of APL Extensions — Trains and High Rank Operations

DVYALOC

Function Trains: definition

A sequence of 3 functions in isolation forms a train.
The functions can be primitive, derived or defined:
¢ +.x foo A 3 functions

They can even be trains:

(+# = #) + | a 3 functions

¥ #dyalogl9 A Decade of APL Extensions — Trains and High Rank Operations

DVALOC

SkewSymmetric

A skew symmetric matrix M satisfies M = -§{M

Write an (f g h) train that tests for skew symmetry!

Examples:

SkewSymmetric 2 2p0 2 "2
1

SkewSymmetric 3 3p4tl
0

¥ #dyalogl9 A Decade of APL Extensions — Trains and High Rank Operations

DVYALOC

Function Trains: definition

A sequence of 3 or more functions in isolation forms a train:

+ , -, x , = A 7 functions

¥ #dyalogl9 A Decade of APL Extensions — Trains and High Rank Operations

DVYALOC

Function Trains: fork

Functions in a train are grouped in threes from right:

+,-,X .+ & (+,(—,(x,+)))

S——

S~

]Box on -trains=parens A for diagnostics
+9_3x3+

(=, (x,%))

¥ #dyalogl9 A Decade of APL Extensions — Trains and High Rank Operations

DVYALOC

Function Trains

Odd-numbered functions starting from the right are applied
to the train’s argument(s):

6 (+ ’ - 9 x ’ +) 2
(6+2):(6_2)3(6x2):(6+2)
g8 . & , 12 , 3

Intervening, even-numbered, functions are applied between
results of the odd-numbered functions

¥ #dyalogl9 A Decade of APL Extensions — Trains and High Rank Operations

DVYALOC

Function Trains: definition

A sequence of 2 functions in isolation also forms a train:

- X A 2 functions

6 (- x) 2
12

¥ #dyalogl9 A Decade of APL Extensions — Trains and High Rank Operations

DVYALOC

Function Trains: step-by-step evaluation

= 6 (- x) 2

¥ #dyalogl9 A Decade of APL Extensions — Trains and High Rank Operations

DVYALOC

Function Trains: step-by-step evaluation
= 6 (- x) 2

= - (6 x 2)

¥ #dyalogl9 A Decade of APL Extensions — Trains and High Rank Operations

DVYALOC

Function Trains: step-by-step evaluation
= 6 (- x) 2
& - (6 x 2)

= - 12

¥ #dyalogl9 A Decade of APL Extensions — Trains and High Rank Operations

DVYALOC

Function Trains: step-by-step evaluation

= 6 (- x) 2

= - (6 x 2)
= - 12
=3 12

¥ #dyalogl9 A Decade of APL Extensions — Trains and High Rank Operations

DVYALOC

Function Trains: definition

A sequence of 2 or more functions in isolation forms a train:

- +4 + ¥ A 4 functions

(- +4# + #) 2 7 1 8
4.5

¥ #dyalogl9 A Decade of APL Extensions — Trains and High Rank Operations

DVALOC

Function Trains: atop

After making zero or more groups of three, there may be a
function left over:

-+t 2 E = (-4t + #))

S~

]Box on -trains=parens A for diagnostics
- +f T F
-((+£)+#)

¥ #dyalogl9 A Decade of APL Extensions — Trains and High Rank Operations

DVALOC

Function Trains: atop

After making zero or more groups of three, there may be a
function left over:

(- +4£ + #) n<2 7 1 8
= (+#n) + (#n)
- 18 =+ 4

An even-numbered leftmost function is applied to the result.

¥ #dyalogl9 A Decade of APL Extensions — Trains and High Rank Operations

DVYALOC

Function Trains: summary

A 2-train is an atop:
(g h) w
o (g h) w
A 3-train is a fork:
(fgh) w & (fw)g(hw)
o (f gh) w © (o f w) g (o h w)
The left tine of a fork (but not an atop!) can be an array:
(Agh)w < A g (hw)
o (Agh)w < A g (o h w)

= g (h
& g (o h

¥ #dyalogl9 A Decade of APL Extensions — Trains and High Rank Operations

DVALOC _

IdentityMatrix

The identity matrix for a square matrix M is like an all-
zero M but with ones along the diagonal. Write a train
that takes a square matrix as argument and returns the

corresponding identity matrix:
IdentityMatrix 3 3p5

OO+~
OO
— OO

¥ #dyalogl9 A Decade of APL Extensions — Trains and High Rank Operations

DVYALOC

Function Trains: addressing arguments

¥ #dyalogl9 A Decade of APL Extensions — Trains and High Rank Operations

DVYALOC

Function Trains: addressing arguments

(¢ = ~) 'racecar' A palindrome?
(¢'racecar') = (+'racecar')

¥ #dyalogl9 A Decade of APL Extensions — Trains and High Rank Operations

DVALOC

Function Trains: addressing arguments

(¢ = ~) 'racecar' A palindrome?
(¢'racecar') = (~'racecar')

' ' (# ¢ +) 'you_can_too' A cut at as
(' '"#'you _can_too') ¢ (' _'~'you_can_too')

¥ #dyalogl9 A Decade of APL Extensions — Trains and High Rank Operations

DVYALOC

Function Trains: runs of monadic functions

¥ #dyalogl9 A Decade of APL Extensions — Trains and High Rank Operations

DVYALOC

Function Trains: runs of monadic functions

¢ -
(2% > +) [JA A pick random

¥ #dyalogl9 A Decade of APL Extensions — Trains and High Rank Operations

DVYALOC

Function Trains: runs of monadic functions

(2 £ > +) [A
(20# 2 +) [A A pick random
(7o#20A) = (+[0A)

¥ #dyalogl9 A Decade of APL Extensions — Trains and High Rank Operations

DVYALOC

Function Trains: runs of monadic functions

(2 £ > +) [A
(2% > +) [JA A pick random

(7<£0A) > (+0A)

7 (o~ 2 + x4) '-0+'
7 (- 2~ 2 + xo04) '-0+' A pick by sign
7 (o~ 2 4+o0x 4) '-0+'

¥ #dyalogl9 A Decade of APL Extensions — Trains and High Rank Operations

DVALOC

Function Trains: runs of monadic functions

(2 £ > +) [A
(2% > +) [JA A pick random

(7<£0A) > (+0A)

7 (o~ 2 + x4) '-0+'

7 (- 2~ 2 + xo04) '-0+' A pick by sign
7 (o~ 2 4+o0x 4) '-0+'

(7 v '-0+') o= 7 (2 +4ox 4) '-0+'

¥ #dyalogl9 A Decade of APL Extensions — Trains and High Rank Operations

DVYALOC

Function Trains: constants on the right

(o + 180) 45

. A degrees to radians
(180 =+~ 0) 45

¥ #dyalogl9 A Decade of APL Extensions — Trains and High Rank Operations

DVYALOC

Function Trains: constants on the right

(o + 180) 45 .
. A degrees to radians
(180 =+~ 0) 45
(I »-1) 5

A gamma function
(1 -51) 5 J

¥ #dyalogl9 A Decade of APL Extensions — Trains and High Rank Operations

DVYALOC

PathLength

The length of a path can be determined from the position of
its points when given as complex numbers with the formula
{+/12-/w}points

Translate this dfn into a train!

Example:

PathLength 1J1 4J1 L4J6
8

¥ #dyalogl9 A Decade of APL Extensions — Trains and High Rank Operations

DVALOC

Function Trains: summary

A 2-train is an atop:
(g h) w
o (g h) w
A 3-train is a fork:
(fgh) w & (fw)g(hw)
o (f gh) w © (o f w) g (o h w)
The left tine of a fork may also be an array:
(Agh)w < A g (hw)
o (Agh)w < A g (o h w)

= g (h
& g (o h

¥ #dyalogl9 A Decade of APL Extensions — Trains and High Rank Operations

DVYALOC

Break

¥ #dyalogl9 A Decade of APL Extensions — Trains and High Rank Operations

DVYALOC

High Rank Operations

¥ #dyalogl9 A Decade of APL Extensions — Trains and High Rank Operations

The Rank (¢) operator

Like Power (#), Rank takes a function left operand and an array right operand:

Co?2
/ N

S —

A function A cell rank

Rank with a right operand k calls its function operand on k-cells of every
argument, using the entire argument if its rank is less than k.

Unlike Each ("), Rank works with flat arrays: it never exposes the items of the
argument, and always treats them as part of an array.

Grade with Rank turns each rank-2 cell into a rank-1 grade.

Example: Grading cells

34
98

58
12

86
88

98
72

33
27

84
73

41
80

98
94

Fa « 74 2 6pl00
96 68 49 93
56 20 30 60

23 23 17 60
99 74 77 92

14 96 7 5
78 35 23 21

4 76 85 46
86 22 92 60

N~ NP
RN RN

(A2) a

The shape is reduced from 4 2 6 to 4 2, retaining the frame 4.

Result mixing

The result cells generated by f in f¢r are mixed together, like with 1. So if they
don't all have the same shape, fills are inserted:

Result mixing

The result cells generated by f in f¢r are mixed together, like with 1. So if they
don't all have the same shape, fills are inserted:

Here's how Rank relates to Each, when called monadically:

(fsk)x — f c[(-k)rizpx]x
(cofsk)x «— fc[(-Kk)rizpx]x
(Cofed3@)x — f'Xx

(fek)X — tf ' c[(-k)rt1zpx]x

The function c[(-k) 11#px] simply encloses the k-cells of its argument. Using Rank itself, we
might write (fsk)x «— 1T cskrx.

Fa<3 5p1 0 0 1
10011
001160
01100

célta

10011/060110/061100

1 célta

145|342 3

t1 ' c3lFa A Same as 1%1

N W=
w k&~
© o wum

csk is a simple and helpful tool for thinking about Rank.

(cofsk)Xx & fc[(-Kk)r1zpx]x

To avoid mixing results, you can compose c with the left operand.

a
col1%]1ka 1001
06011
145|342 3 ©110

oo

>,/ ce1°l |a
1453423

{w[Awl} duU/ co131 Fa A Columns with any 1s
12345

1V£a
12345

Rank works best when the operand function's result shape is predictable. This
trick turns any function into one whose result always has shape 6.

(cofod3@)x — f X
Each can be implemented in terms of Rank!

In fact, the] language has no Each primitive at all, as it uses Rank instead.

x<'Each' 'in' 'terms' 'of' 'Rank'

¢ x

hcaE|ni|smret|fo|knaR

co@Qods0 kX

hcaE|[ni|smret|fo|knaR

D isn't needed if x is simple, and c isn't needed if each result is a simple scalar.

Exercise: no-blank split

Rewrite the idiom ~o' ' 1 as a single function with Rank.

F t « t'The' 'idiom' 'is' 'still' 'faster' 'in' '17.1'
The
1diom
1s
still
faster
in
17.1

The|idiom|is|still|faster|(in|1l7.1

Leading and trailing axes

We choose to divide axes so that cells are
contiguous in the array's ravel, and in
memory. For Rank's argument that means:

e Leading axes determine the frame, which
organises the argument and result cells.

e Trailing axes determine the shape of each
argument cell (but not the final result).

A cell is a selection of one index from each
leading axis, and the whole of each trailing
axis. An example might be A[3;2;;; 1, which
selects a 3-cell of A.

Cell axes
Trailing Leading
0010 0|0 10
1100 11100
1110 1110
00O0O 0(0 0O
0001 0001
0010 0010
1011 1011
0010 0010
1110 1110
11 1[1]1

Leading and trailing axes

We choose to divide axes so that cells are
contiguous in the array's ravel, and in
memory. For Rank's argument that means:

e Leading axes determine the frame, which
organises the argument and result cells.

e Trailing axes determine the shape of each
argument cell (but not the final result).

A cell is a selection of one index from each
leading axis, and the whole of each trailing
axis. An example might be A[3;2;;; 1, which
selects a 3-cell of A.

Cell axes
Trailing Leading
0010 O 010
1100 1 10/0
1110 1110
O0O0O O 0 0[O
0O00O01 0O 0 0f1
0010 O 010
1011 1 011
0010 O 0 1(0
1110 1110
3]2]a 3124

Leading and trailing axes

We choose to divide axes so that cells are
contiguous in the array's ravel, and in
memory. For Rank's argument that means:

e Leading axes determine the frame, which
organises the argument and result cells.

e Trailing axes determine the shape of each
argument cell (but not the final result).

A cell is a selection of one index from each
leading axis, and the whole of each trailing
axis. An example might be A[3;2;;; 1, which
selects a 3-cell of A.

Cell axes
Trailing Leading
0010 0,01 O
1100 110 O
1110 111 O
00O0O 00|00
0001 00|01
0010 0/0f1 O
1011 110(1 1
0010 00|10
1110 111 O
1[3]2 1(3[2

Reductions with Rank

How do last- and first-axis reductions interact with Rank?

a<2 3 4pr124

+/51 a A Shape 2 3 +#%]1 Fa A Shape 2 3
10 26 42 10 26 42
58 74 90 58 74 90

+/%2 Fa A Shape 2 3 +#%2 Fa A Shape 2 4
10 26 42 15 18 21 24
58 74 90 51 54 57 60

+/%3 Fa A Shape 2 3 +#33 Fa A Shape 3 4
10 26 42 14 16 18 20
58 74 90 22 24 26 28

30 32 34 36

Rank and the leading axis

Rank forces the operand function to work on a suffix of the argument's axes. If it
works only on a single axis, then the leading one is the most flexible choice:

m U
$s3 ©53
ool
052
pealll
o3l

Unlike Axis ($[a]), Rank extends naturally to multi-axis functions.

Rank versus Axis

Axis treats axes as unordered and chooses one of them. Rank uses the natural
ordering to choose smaller or larger cells.

2152FA 105 9 0 2 0 2 20[1]JA 059020 2
1165045 1165045

4 4 9 4] 4 4 4]
30000 30000
53271 53271

2151FA 90202 21[2]A 9020 2
6 5045 6 5045
94007 94007

Negative rank

If the right operand of Rank is negative, it is subtracted from the rank of the
argument. So f¢ 1 calls £ on major cells.

,571 +'abed’ ,571 +4 3p0A 571 F4 3 2p124
a ABC 1 2 3 4 5 6
b DEF 7 8 910 11 12
c GHI 13 14 15 16 17 18
d JKL 19 20 21 22 23 24

Negative rank

If the right operand of Rank is negative, it is subtracted from the rank of the
argument. So f¢ 1 calls £ on major cells.

,571 +'abed’ ,571 +4 3p0A 571 F4 3 2p124
a ABC 1 2 3 4 5 6
b DEF 7 8 910 11 12
c GHI 13 14 15 16 17 18
d JKL 19 20 21 22 23 24

For many functions with axis, f[k] «— f&(-k) (when []I0 is 1). But good luck
using Axis on {w[Aw]}!

Negative rank

If the right operand of Rank is negative, it is subtracted from the rank of the
argument. So f¢ 1 calls £ on major cells.

,571 +'abed’ ,571 +4 3p0A 571 F4 3 2p124
a ABC 1 2 3 4 5 6
b DEF 7 8 910 11 12
c GHI 13 14 15 16 17 18
d JKL 19 20 21 22 23 24

For many functions with axis, f[k] «— f&(-k) (when []I0 is 1). But good luck
using Axis on {w[Aw]}!

If arrays are thought of as nested lists, the operator ¢~ 1 is analogous to Each.

Rank with two arguments

With two arguments, corresponding cells are paired. This matches the two
frames with each other, but the argument cell sizes are independent.

RO oOo
OrRroo
R RPR OO

Rank with two arguments

With two arguments, corresponding cells are paired. This matches the two
frames with each other, but the argument cell sizes are independent.

Fb « 2 171 112 e xs~1 +b
OO000O0O0O6MI1I1I1I1 O 00000060888 8 8
O00111100001 O 004444000014
11001100110 022002200220
1010101061010 101010101010

Fe « 2*¢ " 1+14 +# e x5°1 b
8421 123456789 10 11 12

The function x is called four times on a number from e and a row from b.

Rank allows its right operand to include one rank for each argument, so we could
also have written x50 1 instead of x5 1.

Right operand extension

Rank's right operand controls three possible arguments. If less than three ranks
are given, they are extended as follows to cover all cases:

Monadic right
Dyadic left |
Dyadic right | |

onerank: T 8 ()

\--._j\--._._j

Tworanks: f © 1 2

___/

Threeranks: T @ 1 2

This extension is modelled by ¢3pdrank.

Exercise (or guessing game)

We can find which rows of a character matrix match a string with monadic Rank:

Fa « t'rank' 'rack' 'tank' 'rank' 'rink’
rank
rack
tank
rank
rink
‘rank'o=%1 Ia
10010

But this can be awkward when the string is not known in advance. Can a single
function with dyadic Rank perform the same task?

Exercise (or guessing game)

We can find which rows of a character matrix match a string with monadic Rank:

Fa « t'rank' 'rack' 'tank' 'rank' 'rink’
rank
rack
tank
rank
rink
‘rank'o=%1 Ia
10010

But this can be awkward when the string is not known in advance. Can a single
function with dyadic Rank perform the same task?

'‘rank' =51 Fa
10010

Scatter-point indexing

The code below selects elements of the matrix a using rows of i for indices. It's
equivalent to a[11] but works with flat indices directly.

Fa « 5 5p[]A

ABCDE

FGHIJ

KLMNO

PQRST

UVWXY
ie«232p14 55 11 32 35 22
i (1 99) a

DYA

LOG

Version 18.0 introduces special code for [[¢1 99, making it the fastest way to
select elements or subcells.

Scalar extension

For a scalar function such as Power (*) there are three obvious ways it can apply
to an array argument:

2 * 10 A Some powers of 2
2 4 8 16 32 64

(16) * 2 A Some squares
149 16 25 36

(16) * 16 A Some self-exponents
1 4 27 256 3125 46656

If there's a scalar argument, it has to be used in every function invocation, since

there's nowhere else to take arguments from. Rank applies the same principle to
arguments with only one cell.

Three possibilities

When a function with Rank is called dyadically, it may do one of three things:

e Pair cells of the arguments one-to-one

o 31(415
w 31|26

i

e Copy the entire left argument to pair with cells of the right

04 4 15
w 312 6

(m

e Copy the entire right argument to pair with cells of the left

a 311415
W 2 6

N

Three possibilities

When a function with Rank is called dyadically, it may do one of three things:

e Pair cells of the arguments one-to-one

a 31
w 31

415
2 6

B =
= |32
B =

e Copy the entire left argument to pair with cells of the right

x
w 31

4 15
2 6

-é ‘f33 2|

e Copy the entire right argument to pair with cells of the left

a 31
W

4 15
2 6

E>- ‘f332|

Three possibilities

When a function with Rank is called dyadically, it may do one of three things:

e Pair cells of the arguments one-to-one

==
a« 3 1[4 15 - ‘f532| ‘f3_2|

e Copy the entire left argument to pair with cells of the right

o 415 .. o
o ER -é ‘f32| ‘fgg 2|

e Copy the entire right argument to pair with cells of the left

o 31[415 ..
LS E}— 53 2| |52 99

Vigorous exercise

Given a matrix and a single vector,
we'd like to join each row of the matrix |1 g 1 A{a, [1.5+1101 (pa)pu}B
to that vector. 20.2
3 0.3
FA<2 4p18 4 0.4
1234
567 8 5 0.1
6 0.2
FB<0.1x14 7 0.3
0.1 0.2 0.3 0.4 8 0.4

This solution is pretty awful: it requires an obscure use of Axis and doesn't check
its argument shapes. Rewrite it using Rank.

