
https://xpqz.github.io/learnapl/

tl;dr

Presenter
Presentation Notes
Thank you, Morten!

I wrote an introductory text to APL, and if you're impatient, you can find it here.

Presenter
Presentation Notes
It starts off like this. Go check it out, and please reach out to me if you have feedback or spot errors.

Presenter
Presentation Notes
Hello. I'm Stefan Kruger, and I'm here to tell you a bit about how I discovered APL, and why I came to write a book about it.

This talk will cover the ground making up the first and last chapters of the book, skipping over most of the actual APL in the middle.

Stefan Kruger
• CS person who spent far too long at university

• Mac zealot

• Day job at planet-sized mega corp. Ken himself worked for us...

• Mostly teach customers how to stop shooting themselves in the foot

• One of those New APLers™ Morten talked about in a blog post a few months back...

Presenter
Presentation Notes
I guess I'm a computer scientist. A lapsed computer scientist. I did a PhD on something about Fourier transforms back in the day. I've worked as a software developer since the late 90s in various shapes, languages, and companies. Nowadays, I work for a very large International company making Business Machines. Ken himself used to work here. I help customer engineering teams when they run into problems. Whilst long in the business, I'm fairly new to APL. One of those New APLers. And yes, I make no excuses for robustly advocating for the Mac platform.

APL? What's that then?

Presenter
Presentation Notes
I discovered APL through a programming competition known as Advent of Code -- every December there is an advent calendar of little code problems set, two per day. There is a bunch of us at work who tend to take part.

Presenter
Presentation Notes
Here's the completed 2015 score sheet. It's covering the topics you'd expect to encounter in your first year of Computer Science. Basic algs and data structures, but with a sprinkling of clever twists. A couple of them every year tend to be proper hard. Solutions tend to run to 20 - 100 lines of code in something like Python.

k?
~100 loc

ALL OF THEM?

Presenter
Presentation Notes
Whilst working my way backwards over the years where I hadn't taken part, I came across the following file. It said "advent of code" at the top, and it was apparently written in a language called "K". I'd never heard of it, and curiously, I could not understand a single thing. Normally, I expect to be able to read most languages. The page ran to about 100 lines of code, about what I'd expect a Python solution to one of the harder problems to come out as. Which problem was this? It dawned on me that it was ALL of them. I couldn't understand how this was possible.

K is sorta APL+Lisp...?

Presenter
Presentation Notes
So I started digging a bit. Someone claimed that K is an extremely stripped form of APL, but with a bit of inspiration from Lisp and no funky glyphs. Now, I had actually heard of APL back in my university days. It piqued my interest.

APL: the...

of array langs

Presenter
Presentation Notes
As it turns out, APL is the daddy! The OG of array languages. If I wanted to explore this style of programming, going back to the roots seemed to be the way to go.

⍨ ⍤ ⍥ ⊢ ⍉ ⍣ ∇ ← ⍬

Presenter
Presentation Notes
As a casual observer, it was love at first sight! The expressive power. The pretty symbols. Here are some of my favourites.

Presenter
Presentation Notes
Especially this one. My face throughout the process.

APL

Presenter
Presentation Notes
The feeling that APL was all magic runes, chiselled by viking mages into slabs of granite. It felt at the same time both ancient and modern.

Presenter
Presentation Notes
That inscription can be written out as this.

Presenter
Presentation Notes
If you evaluate it, you get the following:

Experts still debate what the numbers mean, but the vikings clearly understood array-oriented programming.

APL has a reputation:

Presenter
Presentation Notes
As we're all aware, APL has a reputation.

It's for mathematicians

Unreadable

Write-only

Impossible to learn

Community is a Council of
Wizards

One of these is true

The Council of Wizards

⍎⌽⍕⌈*○≡⍬

Presenter
Presentation Notes
I certainly felt like there is a secret guild of Array Magicians hiding in plain sight, speaking in tongues. From Latvia to South Korea, via India and Portugal, they walk amongst us. They gather in obscure corners of the internet.

⍎⌽⍕⌈*○≡⍬

The APL Orchard

Presenter
Presentation Notes
I certainly felt like there is a secret guild of Array Magicians hiding in plain sight, speaking in tongues. From Latvia to South Korea, via India and Portugal, they walk amongst us. They gather in obscure corners of the internet.

Isn't it dead?

...or at best a living fossil?

Presenter
Presentation Notes
Another thing you hear as an APLer is that it's a dead language -- the Latin of programming -- or at best a living fossil. Whilst it's not topping any popularity lists, it's alive and well, and perhaps a language who's time has come: APL offers unprecedented "mechanical sympathy" to modern processors. I came across a couple of quotes I'd like to share with you.

Old technologies that have stuck around are sharks, not
dinosaurs. They solve problems so well that they have
survived the rapid changes that occur constantly in the
technology world. Don't bet against them.

–Justin Etheredge

“

Presenter
Presentation Notes
Justin Etheredge was talking about relational databases, but his point is valid for APL, too. It takes a lot for a technology to really stay the course.

Old technologies that have stuck around are sharks, not
dinosaurs. They solve problems so well that they have
survived the rapid changes that occur constantly in the
technology world. Don't bet against them.

–Justin Etheredge

“

Presenter
Presentation Notes
Surviving technologies have survived for a reason.

Another quote that resonated with me is from Aaron Hsu

Good APL follows a set of best practices that directly
contradict and conflict with traditional programming
wisdom. Indeed, APL design patterns appear as Anti-
patterns in most other programming languages.

–Aaron Hsu

“

Presenter
Presentation Notes
He said that....

This cognitive dissonance is one
reason why some “computer people”

hate APL.

Edsger Dijkstra

APL is a mistake,
carried through
to perfection

Presenter
Presentation Notes
Like the self-styled godfather of computer science, Edsger Dijkstra. Dijkstra said many things about APL, not one of them flattering.

A 'bag of tricks', he said, encouraging the programmer to think of problems as puzzles, requiring them to find the correct trick rather than to express their ideas elegantly. It's fitting that the algorithm which bears his name is infuriating to implement in APL without resorting to tradfns.

For me, it's the main draw

Learning APL ...is an act of

REBELLION

Presenter
Presentation Notes
I interpreted this as: learning APL today is an act of rebellion. It's a hard no to verbosity, gang-of-four design patterns, object orientation nonsense. It's two fingers to megabytes of code to do the simplest of tasks.

It felt like I'd come home.

Learning APL

Presenter
Presentation Notes
So I set about trying to teach myself APL. I've taught myself countless programming languages over the years. How hard can it be?

Not hard:

Presenter
Presentation Notes
The things I thought were going to be hard weren't hard.

Learning to type

Presenter
Presentation Notes
Like learning to type APL on a keyboard. Everyone always bangs on about what a barrier of entry this is. It's not.

What glyphs mean

Presenter
Presentation Notes
And the same for figuring out what the glyphs mean. I think in this regard, APL is actually easier than the situation we have in J or K, even though those languages use normal symbols.

Coding right to left

Presenter
Presentation Notes
Going with the execution flow of APL soon comes naturally, too.

Hard:

Presenter
Presentation Notes
The actual hard bits were things I didn't even know existed

Data-parallel problem solving;
thinking in arrays

Presenter
Presentation Notes
The APL Way, if you like -- in the beginning I desperately grasped for the iterative parts of APL, leading to code that's both ugly and slow. Solving problems the APL way feels incredibly alien at first. Fast, idiomatic APL is crushingly slow translated to another language. Conversely, techniques that are fast in other languages are slow in APL. This takes time to sink in.

Performance intuition

Presenter
Presentation Notes
At a more microscopic level, Dyalog has magic optimisations here and there, and hitting those -- mostly by luck -- can REALLY make your code fly. Change a single glyph, and it crawls. I still struggle with this.

Reading tacit code

Presenter
Presentation Notes
It's still quite hard for me, a few years down the line. Powerful, compact, efficient - sure. Easy to read, write and understand? It makes me appreciate better what it must be like being dyslexic.

1↓,⊢⍤/⍨1(⊢∨⌽)0,≠

From APLCart

Presenter
Presentation Notes
Here's a train I picked from AppleCart. You might be able to understand that at a glance. I still resort to pen and paper.

1↓,⊢⍤/⍨1(⊢∨⌽)0,≠

CMC: rewrite as a dfn

┌─┼───┐

1 ↓ ┌─┼─────┐

, ⍨ ┌───┼─────┐

┌─┘ 1 ┌─┼─┐ ┌─┼─┐

⍤ ⊢ ∨ ⌽ 0 , ≠

┌┴┐

⊢ /

Presenter
Presentation Notes
Here's a little exercise for you - a Conference Mini Challenge: rewrite that train to a dfn. Here's the parse tree. We can perhaps return to this later.

1↓,⊢⍤/⍨1(⊢∨⌽)0,≠

APL is a beautiful thing!

Presenter
Presentation Notes
But APL is a beautiful thing.,

Why are there so few books?

1↓,⊢⍤/⍨1(⊢∨⌽)0,≠

Presenter
Presentation Notes
One thing that struck me is that there weren't any intro to APL books that I could find. At least not ones that spoke to me.

Why are there so few books?
• I know how to program

• I am impatient

• Show me examples! I'll figure out how they work

• MDAPL: at the time outdated, too long, too "trad" (IMHO!)

Kudos to Rodrigo for bringing MDAPL into the modern era!

Presenter
Presentation Notes
I like to learn from books, and my bookshelf contains some classics I've accumulated over the years. As a reader,,

There is of course MDAPL - but at the time outdated, very long, and devotes a large volume of pages to the parts of Dyalog I wasn't ready to tackle.

Highlight Rodrigo's efforts on bringing MDAPL into the modern era.

APLSomething like these

Presenter
Presentation Notes
Here are some examples of books I've read and enjoyed when learning new languages. They're focused, not exhaustive, a bit humorous, and examples-led. The Erlang book is especially good, I think.

Can I do something about this?

Presenter
Presentation Notes
So it struck me -- could this be a way for me to contribute, rather than sit on my ass whining about the lack of books?

(Disregarding the fact I barely
know the language)

Presenter
Presentation Notes
Leaving to one side for the moment the fact that I barely know the language.

"Ask not what
APL can do for

you...

...ask what you
can do for APL"

Presenter
Presentation Notes
As Ken himself probably never said.... but he should've! Now, whilst I've not written books on programming languages before, I've written some other stuff over the years: papers, oodles of blog posts on various topics, a phd thesis, technical documentation...

The Plan
⎕IO←0

• Task 0: Plow through the back catalog of APL Orchard "Cultivations"

• Task 1: read every APL-related paper I can find by Roger Hui

• Tasks 2015 - 2020: do all previous Advent of Code problem sets in APL --
this took me best part of a year... I do have a day job!

• Task ??: start writing, learn on the job, hope for the best

Presenter
Presentation Notes
I needed a plan, and I needed to seriously upskill -- I'm going to spare you most of the details of that process. Starting from zero, I studied the back catalog of Orchard Cultivations, Adam's impromtu fast-paced lecture series covering basically the whole of D - gold mine for the learner.
Next, reading Roger's papers. Roger very sadly passed away recently; a huge loss for the array community. Then work through various problem collections. Some of the AoC ones were hard-going for my lacking skills, even if I'd done them before in a different language. When I look through my AoC solutions now, I can see my own skills improving.

What did I learn?

Presenter
Presentation Notes
So looking back, what did I learn?

Well, I picked up APL

Presenter
Presentation Notes
Well, I picked up APL, and it's an invaluable tool to have in your tool chest. My progress had its ups and downs, but ultimately not that different from learning any other language.

I've become a better
programmer.

Presenter
Presentation Notes
Perhaps the most surprising thing is that a whole new problem solving approach is there for me, even in other languages.

APL fits my mindset

but then again, my other
hobby is regular expressions

Presenter
Presentation Notes
Perhaps this says more about me than about APL

(dramatic pause)

Presenter
Presentation Notes
I'd like to change tack for a bit

What could be better?

Presenter
Presentation Notes
Let's talk about what could be better -- and I really don't intend to talk about the sharp corners of APL itself: you're already familiar with those and the reasons why Dyalog are weary of smoothing them off.

Biased observations from a
"New APLer" perspective

Presenter
Presentation Notes
Let me stress that what follows are my biased observations from a "New APLer" perspective.

...on a Mac

Presenter
Presentation Notes
and to further complicate things, on a Mac. And all of what follows is on the current version! John's talk just now addresses some of these issues in the upcoming 18.2...

It's awkward to fit Dyalog into
a modern* workflow

emacs, 1978; vim, 1991; git, 2005; VS Code, 2015 *

Presenter
Presentation Notes
The truth is.....

For some definition of modern. Emacs was launched in 1978. vim 1991. git 2005. VS Code, 2015.

Presenter
Presentation Notes
Text is an excellent medium in which to store source code, and basically ALL tools are based on this assumption. This somehow passed APL's parallel universe by. Dyalog is now on its 18th major release, and it's only just starting to catch up.

Don't get me wrong: it can be
done

To work with code as text
• Install a completely separate application stack, Microsoft's .NET Core

• Install latest version of the LINK library (tricky on a Mac)

• Use LINK to map a directory on the disk containing my code to a
namespace

• To execute a text file from the terminal command line.... (pre-18.1/2).
On a Mac... good luck

• To be fair, once set up, it works

Presenter
Presentation Notes
To be fair -- once it's set up, it works nicely, and in my beta version of 18.1, LINK is finally bi-directional, so that I can edit code with external tools, and have the interpreter do the right thing. But you have to be a pretty sophisticated Dyalogger to get to this point. And really, I had no desire to install a complete .NET stack on my machine just for this.

Other languages:

Code in a text file

Point interpreter to file

Presenter
Presentation Notes
In most other dynamic languages, you point the interpreter at a file, and it starts at the top, evaluates the code it finds line by line until it finishes (or crashes). It's a nice, simple model.

APL in a text file!

Point interpreter to file

Great things are coming!

Execute on the command line

Presenter
Presentation Notes
But great things ARE just over the horizon: LOOK: I can execute a text file with APL code!

Presenter
Presentation Notes
This is a game changer for me. The 18.1/2 release makes great strides in practical usability. The greatest Dyalog yet?

Make it easier for me to use
tools I already use

Presenter
Presentation Notes
My plea to Dyalog boils down to this. Be a good citizen on the platforms you support. Make it easy to integrate, cooperate and communicate with common tools, protocols and systems. Let me edit and debug APL with the editors used by millions of users.

Be better at Mac

Presenter
Presentation Notes
The Mac is the "third" platform for Dyalog, in every sense of the word. Software engineers in big companies use Macs, even if they never develop software FOR Macs. Why? They're cost-effective, and easy for enterprise IT departments to manage and deploy. We develop on Mac, and deploy to Linux in the Cloud.

It's a *nix workstation

Yes, really.

Presenter
Presentation Notes
It really is. A Mac isn't an "appliance" - don't treat it as one. Dyalog's view is that Business/finance use Windows, engineering/science use Linux, and ... MacOS is for "other". I'd like to challenge that assumption, as I think it's a missed opportunity for Dyalog.

Give me a tarball, not an "app"

Presenter
Presentation Notes
The way Dyalog installs on a Mac makes it hard to use for multi-engineer software development projects, as it can't realistically be used from the command-line. It's impossible to string together in polyglot pipelines.

Treat the Mac exactly like
Linux!

Presenter
Presentation Notes
Treat the Mac EXACTLY like you treat Linux.
I have just under a dozen different language interpreters and compilers installed, all of which install on the Mac just like they do on Linux. And as a bonus, much easier for Dyalog's own release engineering, too!

Final thoughts

⍝⍴⌊

Presenter
Presentation Notes
I've enjoyed my own APL journey enormously. It forced me to reexamine some calcified patterns in my own brain on what programming should be like. I wish I'd discovered it earlier.

Writing a book is an excellent
way of learning APL

Presenter
Presentation Notes
When writing a book, notionally for others, you soon discover the bits you don't understand, and you can't really move on before you do.

If a single person finds it
useful, it was worth it

I'm not a traditional Dyalog
user

Presenter
Presentation Notes
But the truth is,

I don't build big GUI-driven
applications in OO-APL

Not a "domain expert"

Presenter
Presentation Notes
(whatever that really means)

I hope that Dyalog sees a future for
APL as a tool also for the rest of us:

...coders, toolsmiths, data analysts,
ad-hoc scripters in polyglot

environments

Presenter
Presentation Notes
quiet!

who see APL as a refuge from
the ills of OO

An elegant weapon for a more
civilized age

1↓,⊢⍤/⍨1(⊢∨⌽)0,≠

{1↓(x∨1⌽x←0,⍺≠⍵)/⍺,⍵}

┌─┼───┐

1 ↓ ┌─┼─────┐

, ⍨ ┌───┼─────┐

┌─┘ 1 ┌─┼─┐ ┌─┼─┐

⍤ ⊢ ∨ ⌽ 0 , ≠

┌┴┐

⊢ /

Presenter
Presentation Notes
So, back to the Conference Mini Challenge. Any ideas what it does? Morten? This expression trims leading, trailling and repeating characters given by left argument from the right argument. Here's the dfn I give in the book -- you probably have something smarter by now.

1↓,⊢⍤/⍨1(⊢∨⌽)0,≠
{1↓(x∨1⌽x←0,⍺≠⍵)/⍺,⍵}

Presenter
Presentation Notes
Which is preferable? I'll leave that to you.

My thanks to Rodrigo and Rory
who kindly helped with proofing

*any remaining errors or lies are mine alone

Presenter
Presentation Notes
Any remaining errors or lies are mine alone.

and the whole lot at the APL
Orchard, without whom, etc

Thank you

https://xpqz.github.io/learnapl/

	tl;dr
	Slide Number 2
	Slide Number 3
	Stefan Kruger
	APL? What's that then?
	Slide Number 6
	Slide Number 7
	K is sorta APL+Lisp...?
	APL: the...
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	APL has a reputation:
	It's for mathematicians
	Unreadable
	Write-only
	Impossible to learn
	Community is a Council of Wizards
	One of these is true
	The Council of Wizards
	Slide Number 23
	Isn't it dead?
	Slide Number 25
	Slide Number 26
	Slide Number 27
	This cognitive dissonance is one reason why some “computer people” hate APL.
	Edsger Dijkstra
	For me, it's the main draw
	Slide Number 31
	Learning APL
	Not hard:
	Learning to type
	What glyphs mean
	Coding right to left
	Hard:
	Data-parallel problem solving; thinking in arrays
	Performance intuition
	Reading tacit code
	1↓,⊢⍤/⍨1(⊢∨⌽)0,≠
	1↓,⊢⍤/⍨1(⊢∨⌽)0,≠
	1↓,⊢⍤/⍨1(⊢∨⌽)0,≠
	Why are there so few books?
	Slide Number 45
	Slide Number 46
	Can I do something about this?
	(Disregarding the fact I barely know the language)
	Slide Number 49
	The Plan
	What did I learn?
	Well, I picked up APL
	I've become a better programmer.
	APL fits my mindset
	but then again, my other hobby is regular expressions
	(dramatic pause)
	What could be better?
	Biased observations from a "New APLer" perspective
	...on a Mac
	It's awkward to fit Dyalog into a modern* workflow
	Slide Number 61
	Don't get me wrong: it can be done
	To work with code as text
	Slide Number 64
	Great things are coming!
	Slide Number 66
	Make it easier for me to use tools I already use
	Be better at Mac
	It's a *nix workstation
	Yes, really.
	Give me a tarball, not an "app"
	Treat the Mac exactly like Linux!
	Final thoughts
	⍝⍴⌊
	Writing a book is an excellent way of learning APL
	If a single person finds it useful, it was worth it
	I'm not a traditional Dyalog user
	I don't build big GUI-driven applications in OO-APL
	Not a "domain expert"
	I hope that Dyalog sees a future for APL as a tool also for the rest of us:
	...coders, toolsmiths, data analysts, ad-hoc scripters in polyglot environments
	who see APL as a refuge from the ills of OO
	An elegant weapon for a more civilized age
	1↓,⊢⍤/⍨1(⊢∨⌽)0,≠
	1↓,⊢⍤/⍨1(⊢∨⌽)0,≠
	My thanks to Rodrigo and Rory who kindly helped with proofing
	and the whole lot at the APL Orchard, without whom, etc
	Thank you

