
Olhão 2022

APL9 from outer space

Peter Mikkelsen

APL9 from outer space

 Plan 9 from Bell Labs
 An operating system from the 80’s

 9front fork continues development

 Named after ”Plan 9 from outer space”

 Why write an APL for Plan 9?
 I am a programmer, so I need languages

 There was no APL!

APL on Plan 9

https://p9f.org/glenda.html
© Renee French.

1

https://p9f.org/glenda.html

APL9 from outer space

 First line of code: 2022-01-08

 First ~3 months for basic primitives

 2 month pause

 Threads and message passing

 3 month pause

 More threads and message passing

APL9 history and status

2

APL9 from outer space

 All the fancy stuff
 Debugging

 System functions

 Good error messages

 Speed
 Documentation
 (Users)

What is currently missing

Where is the error (and what is it)?

3

APL9 from outer space

 Focus on the ”unique” features
 Message passing in general

 Send function and receive operator

 Example use cases

 Demonstrations

Outline of the presentation

4

APL9 from outer space

 Sometimes it is nice to run stuff in seperate
threads

 Dyalog has the & operator
 Lightweight ”green threads”

 APL9 also has &
 Full Plan 9 processes

 How do threads share information and
results?

Concurrent programming

5

APL9 from outer space

 Global variables?
 Would require locking (ugh..)

 By returning results
 The parent must wait, and what about two

child threads?

 By sending and receiving messages!

Communication between threads

6

APL9 from outer space

 Channels (like in Go)

 Everyone can put stuff in, and take stuff out

 Requires a way to recieve from one of many
channels (whichever has something in it)

 Plan 9 C has channels
 Some of the main Go developers were the

original Plan 9 developers. Good ideas spread 💡

Message passing models 1

7

APL9 from outer space

 Mailbox (like in erlang)

 Each thread has a mailbox 📬

 Everyone who knows a thread’s ID can
send to it

 Mailbox can only be read by one thread

 Requires selective recieve (think spam)

Message passing models 2

8

APL9 from outer space

 Uses the mailbox model
 Thread IDs are just scalar numbers
 Messages are just APL arrays
 Primitives

 Spawning: id←{X} (f&name) Y

 Sending: msg⍈ids

 Receiving: filter⍇timeout

 ⎕THREADS and ⎕SELF

Message passing in APL9

9

APL9 from outer space

 A tour of &, ⍈, ⍇, ⎕THREADS and ⎕SELF

 A ”double up” thread
 Wait for a message msg

 Reply with 2×msg

 A chain of threads
 N threads sending messages to each other in a

chain

Demonstrations

10

APL9 from outer space

 All very fun, but it is useful?
 One could imagine...
 Session output being handled by a thread,

where each message specified the ”type”
and contents

 Output from multiple threads becomes easy
and synchronised

 You saw the session thread, right?

Other example use cases

11

APL9 from outer space

 All very fun, but it is useful?
 One could imagine...
 Communication between interpreters,

hidden by the simplicity of messages
 Via pipes, sockets, etc.

 A network of APLs
 We already have that!
 ... who says ”the other end” has to be APL?

Other example use cases

12

APL9 from outer space

 To the user, it appears as if the only
communication happening is with R
(remote)

Messages between systems

User

R

In

R

In

User

13

APL9 from outer space

 APL9 runs on Plan 9 but the features
could be implemented anywhere

 Concurrent programming and
multithreading doesn’t have to be
 Nasty

 Difficult

 About performance

Summary

14

APL9 from outer space

 The only requirement is a Plan 9
installation (only tested on 9front)

 https://9front.org/

 https://git.sr.ht/~pmikkelsen/APL9

 https://apl.pmikkelsen.com/

 Use at your own risk 😎

Get started with APL9

15

https://9front.org/
https://git.sr.ht/~pmikkelsen/APL9
https://apl.pmikkelsen.com/

