
Olhão 2022

Simplifying Secure,
Scalable Web Services
Session D12

Brian Becker

Simplifying Secure, Scalable Web Services1

Give a quick introduction to:

 Jarvis – Dyalog's Web Service Framework – to expose APL functions as services

 Docker: to create lightweight Virtual Machines known as "Containers"

 Docker Compose: to launch and manage multiple inter-connected containers

 Amazon Web Services "Elastic Container Service": to allow Docker Compose to
launch containers directly to the cloud (so-called "serverless" deployment)

 How to scale the system by running multiple copies of selected services

 How to assign your own domain name and a certificate to your service

Workshop Goals

Simplifying Secure, Scalable Web Services2

 Workshop SA2 – Building Web Services with Jarvis
 Jarvis – framework for REST and JSON-based web services

 Important configuration settings, debugging, maintaining state

 Introduced (barely) 3 versions of a "phonebook" application web service

 Workshop SP2 – Deploying Services
 Started with the Jarvis phonebook application web service

 By the end of the workshop ~70% of the participants had a load-balanced,
scaled service running on AWS.

 Demonstrated running it securely using HTTPS

Sunday Recap

Simplifying Secure, Scalable Web Services3

 Start with an application

 Use Jarvis to turn it into a web service

 Run the service in a Docker container

 "Split" the service into 2 tiers we termed "front end" and "back end"
Each running in its own container.
Use Docker compose to define the containers that make up the service.

 Run the new service in the cloud (on AWS)

 Scale the service up by running multiple copies of the front end

 Add a load balancer to distribute requests amongst the front ends

 Secure the service by running HTTPS (requires a domain name and a certificate)

The "Plan"

Simplifying Secure, Scalable Web Services4

In the beginning, there was an Application…

Database

App

Simplifying Secure, Scalable Web Services5

Jarvis

Run the app as a service

Database

App

Simplifying Secure, Scalable Web Services6

 Web service framework to build REST or JSON-based services

 Using the JSON paradigm, APL functions are the "endpoints" of the
service

 The request data (payload) is passed to your function as an APL array

 Your function returns an APL array

 Jarvis handles all the conversion between JSON to APL and back again

Jarvis - JSON and REST Services

Simplifying Secure, Scalable Web Services7

]load [SA2]/Jarvis
#.Jarvis

reshape←⊃⍴/
hi←{'Hello ',⍵.name}
j←Jarvis.New 8888 #
j.Start
j.Stop

Jarvis in Action

Simplifying Secure, Scalable Web Services8

The "GetUsers"
endpoint being
executed from a
browser using a
JavaScript client in
Jarvis' built-in test
web page.

The app as a service

Simplifying Secure, Scalable Web Services9

 Any platform capable of issuing HTTP requests (basically everything) can
interact with your web service.

 They need know nothing about APL nor that APL is running the web service

Any client, anywhere

Simplifying Secure, Scalable Web Services10

Docker Container

Jarvis

Run it in a container

Database

App

Simplifying Secure, Scalable Web Services11

FROM ubuntu:22.04

ADD ./dyalog-unicode_18.2.nnnnn_amd64.deb /

ADD /sp2/v7/test /myapp

RUN dpkg -i /dyalog*.deb

RUN git clone https://github.com/dyalog/Jarvis /Jarvis

ENV RIDE_INIT="SERVE:*:4502"

ENV CodeLocation=/myapp

CMD dyalog /Jarvis/Distribution/jarvis.dws

A "Dockerfile" describes a Docker Image

Base Image

Files to Add

Run during
Build

Environment Vars

Run at Startup

This "Dockerfile" completely describes a machine which will run "myapp".

Your
Code

Simplifying Secure, Scalable Web Services12

 DockerHub is to Docker as GitHub is to Git

 A public repository of container images

 Free unlimited public images plus one private image

 Dyalog has several public containers available on DockerHub

 dyalog/dyalog – Just Dyalog APL

 dyalog/miserver – Dyalog APL + MiServer

 dyalog/jupyter – Dyalog APL + Jupyter Notebook framework

 dyalog/jarvis – Dyalog APL + Jarvis

Public Docker Containers

Simplifying Secure, Scalable Web Services13

Running the App in a Container

Simplifying Secure, Scalable Web Services14

Run a container:
docker run

Map host port 8080 to container port 8080:
–p 8080:8080

Map host folder (where our web service code is) to /app in the container:
–v c:\sa2\v3:/app

Set the JarvisConfig environment variable to the location of the Jarvis configuration file:
–e JarvisConfig=./JarvisConfig.json5

Use the dyalog/jarvis public Docker container:
dyalog/jarvis

Docker – it can't be this easy

Simplifying Secure, Scalable Web Services15

 Our Dockerfile

 Build the image and tag it as "phonebook"
docker build –t "phonebook" .

Building a Container from an Image

Simplifying Secure, Scalable Web Services16

Split into Front and Back Ends

Database

Write Operations

Read Operations

Front End

Back End

We'll call this "Two-Tier"

Docker Compose
defines the containers
that make up a service

Simplifying Secure, Scalable Web Services17

 Describes a collection of container images that make up a
service.

 Creates a Virtual IP network that connects the images so
that they can refer to each other by name.

 Supports replication of images and load balancing (more
on this later)

Docker Compose

Simplifying Secure, Scalable Web Services18

Docker Compose
Two Services

Simplifying Secure, Scalable Web Services19

Docker Compose
Two Services
Same Image

Simplifying Secure, Scalable Web Services20

Docker Compose
Two Services
Same Image
Same Permanent Storage

Simplifying Secure, Scalable Web Services21

Docker Compose
Two Services
Same Image
Same Permanent Storage
Different Jarvis Configurations

Simplifying Secure, Scalable Web Services22

Docker Compose
Two Services
Same Image
Same Permanent Storage
Different Jarvis Configurations
frontend
clients access via port 8080
Zero-footprint RIDE available on port 8088

Simplifying Secure, Scalable Web Services23

Docker Compose
Two Services
Same Image
Same Permanent Storage
Different Jarvis Configurations
frontend
clients access via port 8080
Zero-footprint RIDE available on port 8088

backend
internal only access via port 8081
Zero-footprint RIDE available on port 8089
restart if the container crashes

Simplifying Secure, Scalable Web Services24

docker compose up –f docker-compose-local.yml

 Yes, it really is that easy…

Running it locally

Simplifying Secure, Scalable Web Services25

"The Cloud" (AWS)

Try it in the cloud

Database

Write Operations

Read Operations

Simplifying Secure, Scalable Web Services26

 Acquire an AWS account (start with the free tier)
 Provide credit card information

 Cost to "experiment" is minimal

Amazon Web Services (AWS)

Simplifying Secure, Scalable Web Services27

 Acquire an AWS account (start with the free tier)
 Provide credit card information

 Cost to "experiment" is minimal

Amazon Web Services (AWS)

Simplifying Secure, Scalable Web Services28

 If you look the list of services provided by AWS, you'll find
(at least I did) a dizzying number of choices, many with
similar names…

AWS Services

Simplifying Secure, Scalable Web Services29

 If you look the list of services provided by AWS, you'll find
(at least I did) a dizzying number of choices, many with
similar names…

AWS Services

Simplifying Secure, Scalable Web Services30

 If you look the list of services provided by AWS, you'll find
(at least I did) a dizzying number of choices, many with
similar names…

 Fortunately, Morten, with help from Google, Norbert and
Bjørn worked out the right combination for our service.

AWS Services

Simplifying Secure, Scalable Web Services31

 Create an IAM user (Identity and Access Management)
 Select Access Key credential type
 Attach the AdministratorAccess policy
 Download your credentials (in a .csv file)

 Install the AWS CLI (Command Line Interface)
 Google "install aws cli"
 Download for your platform
 Configure to use the IAM credentials from the above step

AWS Configuration

Simplifying Secure, Scalable Web Services32

 Docker Compose can be connected to the Amazon Elastic
Container Service (ECS)
 Create a "docker context" for ECS

docker context create ecs phonebook

 Switch to the ECS context
docker context use phonebook

Docker/ECS

Simplifying Secure, Scalable Web Services33

 To use our phonebook container from AWS, we need to store it either in
DockerHub or the Amazon Elastic Container Registry (ECR).

 Since we already had a userid on AWS, we used ECR.
aws ecr create-repository –repository-name phonebook

 Now upload the image
 Logon to the ECR server using your AWS credentials

 docker tag the local phonebook image on the ECR server as [youruserid]/phonebook

 docker push [youruserid]/phonebook

Or just edit and run the push.bat file in the workshop materials.

Upload Image to ECR

Simplifying Secure, Scalable Web Services34

docker compose
for AWS

Simplifying Secure, Scalable Web Services35

"The Cloud" (AWS)

Scale it up

Database

Write Operations

Read Operations

Simplifying Secure, Scalable Web Services36

 Want 2 copies of the frontend?

docker compose –p phonebook up –-scale frontend=2

 You can change the scaling while the service is running

Scaling the Front End

Simplifying Secure, Scalable Web Services37

"The Cloud" (AWS)

Load balance it

Database

Write Operations

Read Operations
Lo

ad
 B

al
an

ce
r

Simplifying Secure, Scalable Web Services38

 This is a bit complicated…
 Create an AWS security group

 Add an "Ingress" for the ports you want clients to attach to

 Finally create the load balancer itself

 Fortunately, Morten has written a MakeLoadBalancer function
that does all of this.

 All you need to do is add an x-aws-loadbalancer entry to the
docker compose file

Making a Load Balancer

Simplifying Secure, Scalable Web Services39

"The Cloud" (AWS)

Own it

Database

Write Operations

Read Operations
Lo

ad
 B

al
an

ce
r

Simplifying Secure, Scalable Web Services40

 Up until now, we've had to refer to the service using a long and
cumbersome hostname like
http://phone-loadb-1guewkd0evw2h-887267469.eu-west-3.elb.amazonaws.com

 If you register your own domain with an ISP allows you to do
redirection, you can have a name more to your liking.

 Morten used one.com, Brian used GoDaddy.com

Using your own Domain Name

Simplifying Secure, Scalable Web Services41

"The Cloud" (AWS)

Secure it

Database

Write Operations

Read Operations
Lo

ad
 B

al
an

ce
r

Simplifying Secure, Scalable Web Services42

 Get a certificate – we used AWS Certificate Manager
 ACM uses a couple simple steps to verify that you own your domain

 In AWS EC2 > Load Balancers
 Add a listener on port 443

Securing your service using HTTPS

Simplifying Secure, Scalable Web Services43

 We learned a lot in preparing these workshops.
We expect to learn more.

 Have we simplified the process?

 Jarvis makes it fairly easy to turn your APL code into a web service.

 Docker is almost ridiculously easy. (I pinch myself every time I use it)

 AWS seems daunting, but if you know the services/components to use, it's
actually pretty straightforward. And we've shown you a path to get there.

In Summary

Simplifying Secure, Scalable Web Services44

 Updated workshop materials on GitHub.com/dyalog-training

 Jarvis

 Documentation completion (Nov 2022)

 Training materials, samples, templates, webcasts

 Webcast series breaking down the workshops into "bite-sized" chunks

 We used AWS for the workshop; there are other services that can run Docker
containers in the cloud – Azure, Google, IBM. We may publish similar guides
for other services if our clients need it.

In the near future

