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Give a quick introduction to:

 Jarvis – Dyalog's Web Service Framework – to expose APL functions as services

 Docker: to create lightweight Virtual Machines known as "Containers"

 Docker Compose: to launch and manage multiple inter-connected containers

 Amazon Web Services "Elastic Container Service": to allow Docker Compose to 
launch containers directly to the cloud (so-called "serverless" deployment)

 How to scale the system by running multiple copies of selected services

 How to assign your own domain name and a certificate to your service

Workshop Goals
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 Workshop SA2 – Building Web Services with Jarvis
 Jarvis – framework for REST and JSON-based web services

 Important configuration settings, debugging, maintaining state

 Introduced (barely) 3 versions of a "phonebook" application web service

 Workshop SP2 – Deploying Services
 Started with the Jarvis phonebook application web service

 By the end of the workshop ~70% of the participants had a load-balanced, 
scaled service running on AWS.

 Demonstrated running it securely using HTTPS

Sunday Recap
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 Start with an application

 Use Jarvis to turn it into a web service

 Run the service in a Docker container

 "Split" the service into 2 tiers we termed "front end" and "back end"
Each running in its own container.
Use Docker compose to define the containers that make up the service.

 Run the new service in the cloud (on AWS)

 Scale the service up by running multiple copies of the front end

 Add a load balancer to distribute requests amongst the front ends

 Secure the service by running HTTPS (requires a domain name and a certificate)

The "Plan"
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In the beginning, there was an Application…

Database

App
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Jarvis

Run the app as a service

Database

App
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 Web service framework to build REST or JSON-based services

 Using the JSON paradigm, APL functions are the "endpoints" of the 
service

 The request data (payload) is passed to your function as an APL array

 Your function returns an APL array

 Jarvis handles all the conversion between JSON to APL and back again

Jarvis - JSON and REST Services
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]load [SA2]/Jarvis
#.Jarvis

reshape←⊃⍴/
hi←{'Hello ',⍵.name}
j←Jarvis.New 8888 #
j.Start
j.Stop

Jarvis in Action
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The "GetUsers" 
endpoint being 
executed from a 
browser using a 
JavaScript client in 
Jarvis' built-in test 
web page.

The app as a service
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 Any platform capable of issuing HTTP requests (basically everything) can 
interact with your web service.

 They need know nothing about APL nor that APL is running the web service

Any client, anywhere
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Docker Container

Jarvis

Run it in a container

Database

App
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FROM ubuntu:22.04

ADD ./dyalog-unicode_18.2.nnnnn_amd64.deb /

ADD /sp2/v7/test /myapp

RUN dpkg -i /dyalog*.deb

RUN git clone https://github.com/dyalog/Jarvis /Jarvis

ENV RIDE_INIT="SERVE:*:4502"

ENV CodeLocation=/myapp

CMD dyalog /Jarvis/Distribution/jarvis.dws

A "Dockerfile" describes a Docker Image

Base Image

Files to Add

Run during 
Build

Environment Vars

Run at Startup

This "Dockerfile" completely describes a machine which will run "myapp".

Your
Code
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 DockerHub is to Docker as GitHub is to Git

 A public repository of container images

 Free unlimited public images plus one private image

 Dyalog has several public containers available on DockerHub

 dyalog/dyalog – Just Dyalog APL

 dyalog/miserver – Dyalog APL + MiServer

 dyalog/jupyter – Dyalog APL + Jupyter Notebook framework

 dyalog/jarvis – Dyalog APL + Jarvis

Public Docker Containers
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Running the App in a Container
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Run a container: 
docker run                

Map host port 8080 to container port 8080:
–p 8080:8080

Map host folder (where our web service code is) to /app in the container:
–v c:\sa2\v3:/app

Set the JarvisConfig environment variable to the location of the Jarvis configuration file:
–e JarvisConfig=./JarvisConfig.json5

Use the dyalog/jarvis public Docker container:
dyalog/jarvis

Docker – it can't be this easy
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 Our Dockerfile

 Build the image and tag it as "phonebook"
docker build –t "phonebook" .

Building a Container from an Image
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Split into Front and Back Ends

Database

Write Operations

Read Operations

Front End

Back End

We'll call this "Two-Tier"

Docker Compose
defines the containers
that make up a service
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 Describes a collection of container images that make up a 
service.

 Creates a Virtual IP network that connects the images so 
that they can refer to each other by name.

 Supports replication of images and load balancing (more 
on this later)

Docker Compose
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Docker Compose
Two Services
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Docker Compose
Two Services
Same Image



Simplifying Secure, Scalable Web Services20

Docker Compose
Two Services
Same Image
Same Permanent Storage
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Docker Compose
Two Services
Same Image
Same Permanent Storage
Different Jarvis Configurations
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Docker Compose
Two Services
Same Image
Same Permanent Storage
Different Jarvis Configurations
frontend
clients access via port 8080
Zero-footprint RIDE available on port 8088
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Docker Compose
Two Services
Same Image
Same Permanent Storage
Different Jarvis Configurations
frontend
clients access via port 8080
Zero-footprint RIDE available on port 8088

backend
internal only access via port 8081
Zero-footprint RIDE available on port 8089
restart if the container crashes
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docker compose up –f docker-compose-local.yml

 Yes, it really is that easy…

Running it locally
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"The Cloud" (AWS)

Try it in the cloud

Database

Write Operations

Read Operations
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 Acquire an AWS account (start with the free tier)
 Provide credit card information

 Cost to "experiment" is minimal

Amazon Web Services (AWS)
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 Acquire an AWS account (start with the free tier)
 Provide credit card information

 Cost to "experiment" is minimal

Amazon Web Services (AWS)
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 If you look the list of services provided by AWS, you'll find 
(at least I did) a dizzying number of choices, many with 
similar names… 

AWS Services
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 If you look the list of services provided by AWS, you'll find 
(at least I did) a dizzying number of choices, many with 
similar names… 

AWS Services
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 If you look the list of services provided by AWS, you'll find 
(at least I did) a dizzying number of choices, many with 
similar names… 

 Fortunately, Morten, with help from Google, Norbert and 
Bjørn worked out the right combination for our service.

AWS Services
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 Create an IAM user (Identity and Access Management)
 Select Access Key credential type
 Attach the AdministratorAccess policy
 Download your credentials (in a .csv file)

 Install the AWS CLI (Command Line Interface)
 Google "install aws cli"
 Download for your platform
 Configure to use the IAM credentials from the above step

AWS Configuration
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 Docker Compose can be connected to the Amazon Elastic 
Container Service (ECS)
 Create a "docker context" for ECS

docker context create ecs phonebook

 Switch to the ECS context
docker context use phonebook

Docker/ECS
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 To use our phonebook container from AWS, we need to store it either in 
DockerHub or the Amazon Elastic Container Registry (ECR).

 Since we already had a userid on AWS, we used ECR.
aws ecr create-repository –repository-name phonebook

 Now upload the image
 Logon to the ECR server using your AWS credentials

 docker tag the local phonebook image on the ECR server as [youruserid]/phonebook

 docker push [youruserid]/phonebook

Or just edit and run the push.bat file in the workshop materials.

Upload Image to ECR
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docker compose 
for AWS
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"The Cloud" (AWS)

Scale it up

Database

Write Operations

Read Operations
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 Want 2 copies of the frontend?

docker compose –p phonebook up –-scale frontend=2

 You can change the scaling while the service is running

Scaling the Front End



Simplifying Secure, Scalable Web Services37

"The Cloud" (AWS)

Load balance it

Database

Write Operations

Read Operations
Lo

ad
 B

al
an

ce
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 This is a bit complicated…
 Create an AWS security group

 Add an "Ingress" for the ports you want clients to attach to

 Finally create the load balancer itself 

 Fortunately, Morten has written a MakeLoadBalancer function 
that does all of this.

 All you need to do is add an x-aws-loadbalancer entry to the 
docker compose file

Making a Load Balancer
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"The Cloud" (AWS)

Own it

Database

Write Operations

Read Operations
Lo

ad
 B

al
an

ce
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 Up until now, we've had to refer to the service using a long and 
cumbersome hostname like
http://phone-loadb-1guewkd0evw2h-887267469.eu-west-3.elb.amazonaws.com 

 If you register your own domain with an ISP allows you to do 
redirection, you can have a name more to your liking.

 Morten used one.com, Brian used GoDaddy.com

Using your own Domain Name
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"The Cloud" (AWS)

Secure it

Database

Write Operations

Read Operations
Lo

ad
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 Get a certificate – we used AWS Certificate Manager
 ACM uses a couple simple steps to verify that you own your domain

 In AWS EC2 > Load Balancers
 Add a listener on port 443

Securing your service using HTTPS
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 We learned a lot in preparing these workshops.  
We expect to learn more.

 Have we simplified the process?

 Jarvis makes it fairly easy to turn your APL code into a web service.

 Docker is almost ridiculously easy. (I pinch myself every time I use it)

 AWS seems daunting, but if you know the services/components to use, it's 
actually pretty straightforward. And we've shown you a path to get there.

In Summary
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 Updated workshop materials on GitHub.com/dyalog-training

 Jarvis

 Documentation completion (Nov 2022)

 Training materials, samples, templates, webcasts

 Webcast series breaking down the workshops into "bite-sized" chunks

 We used AWS for the workshop; there are other services that can run Docker 
containers in the cloud – Azure, Google, IBM.  We may publish similar guides 
for other services if our clients need it.

In the near future


