JDYALOC

Olh&o 2022

Simplifying Secure,
Scalable Web Services

Session D12

Brian Becker

Workshop Goals

Give a quick introduction to:
Jarvis — Dyalog's Web Service Framework — to expose APL functions as services
Docker: to create lightweight Virtual Machines known as "Containers"
Docker Compose: to launch and manage multiple inter-connected containers

Amazon Web Services "Elastic Container Service": to allow Docker Compose to
launch containers directly to the cloud (so-called "serverless" deployment)

How to scale the system by running multiple copies of selected services

How to assign your own domain name and a certificate to your service

Simplifying Secure, Scalable Web Services

Sunday Recap

Workshop SA2 — Building Web Services with Jarvis
Jarvis — framework for REST and JSON-based web services
Important configuration settings, debugging, maintaining state
Introduced (barely) 3 versions of a "phonebook" application web service
Workshop SP2 — Deploying Services
Started with the Jarvis phonebook application web service

By the end of the workshop ~70% of the participants had a load-balanced,
scaled service running on AWS.

Demonstrated running it securely using HTTPS

Simplifying Secure, Scalable Web Services

The "Plan"

Start with an application
Use Jarvis to turn it into a web service
Run the service in a Docker container

"Split" the service into 2 tiers we termed "front end" and "back end"

Each running in its own container.
Use Docker compose to define the containers that make up the service.

Run the new service in the cloud (on AWS)
Scale the service up by running multiple copies of the front end

Add a load balancer to distribute requests amongst the front ends

Secure the service by running HTTPS (requires a domain name and a certificate) &=

Simplifying Secure, Scalable Web Services

In the beginning, there was an Application...

App

Simplifying Secure, Scalable Web Services

Run the app as a service

Jarvis
App

Simplifying Secure, Scalable Web Services

Jarvis - JSON and REST Serviees

Web service framework to build REST or JSON-based services

Using the JSON paradigm, APL functions are the "endpoints"” of the
service

The request data (payload) is passed to your function as an APL array
Your function returns an APL array

Jarvis handles all the conversion between JSON to APL and back again

Simplifying Secure, Scalable Web Services

Jarvis in Action

Jload [SA2]/Jarvis
#.Jarvis

reshape<>p/

hi<{'Hello ',w.name}

j«Jarvis.New 8888 #

j.Start

j.Stop

Simplifying Secure, Scalable Web Services

The app as a service

Request

Endpoint: GetUsers v

JSON Payload:
{}

Send |

Response

("msg":"", "payload”: [{"login": "myuserid”, "password”:"*+*" "updatedAt”:"2022-oct-04 @
18:31:02"}],"rc":0}

The "GetUsers"
endpoint being
executed from a
browser using a
JavaScript client in
Jarvis' built-in test
web page.

Simplifying Secure, Scalable Web Services

Any client, anywhere

Any platform capable of issuing HTTP requests (basically everything) can
interact with your web service.

They need know nothing about APL nor that APL is running the web service

2. Administrator: Windows PowerShell

PS C:\Users\brian> curl POST localhost:8800/GetUsers
{"msg":"","payload":[{"login":"myuserid","password":"*xx" "updatedAt":"2022-oct-04 @ 18:31:02"}],"rc":0}

(HttpCommand.Do 'post' 'localhost:8800/GetUsers’' ([ONS'') ('content-type' 'application/json')).Data
{"msg":"","payload":[{"login":"myuserid","password":"x*xx" "updatedAt":"2022-oct-O4 @ 18:31:02"}],"rc":0}

Run it in a container

(Docker Container \

[

Jarvis

App

Jr

_

J

10

Simplifying Secure, Scalable Web Services

A "Dockerfile" describes a Docker Image

v

FROM ubuntu:22.04

ADD ./dyalog-unicode 18.2.nnnnn amdé4.deb /
|ADD /sp2/v7/test /myapp |e

v

RUN dpkg -i /dyalog*.deb
RUN git clone https://github.com/dyalog/Jarvis /Jarvis

ENV RIDE INIT="SERVE:*:4502"
ENV CodeLocation=/myapp

CMD dyalog /Jarvis/Distribution/jarvis.dws

v

This "Dockerfile" completely describes a machine which will run "myapp".

11 Simplifying Secure, Scalable Web Services

Public Docker Containers

DockerHub is to Docker as GitHub is to Git

A public repository of container images
Free unlimited public images plus one private image

Dyalog has several public containers available on DockerHub
dyalog/dyalog — Just Dyalog APL
dyalog/miserver — Dyalog APL + MiServer
dyalog/jupyter — Dyalog APL + Jupyter Notebook framework
dyalog/jarvis — Dyalog APL + Jarvis

12 Simplifying Secure, Scalable Web Services

Running the App in a Container

PS C:\Users\brian> docker run -p 8080:8080 -v c:\sa2\v3:/app -e JarvisConfig=./JarvisConfig.json5 dyalog/jarvis

https://www.dyalog.com

Dyalog APL/S-64 Version 18.2.45405
Serial number: UNREGISTERED - not for commercial use

Dyalog is free for non-commercial use but is not free software.
A basic licence can be used for experiments and proof of

For further information visit

+
|
|
| concept until the point in time that it is of value.
|
| https://www.dyalog.com/prices-and-licences.htm

+

Mon Oct 10 21:35:55 2022
Link Warning: [SE.Link.Create: .NET or .NetCore not available - watch defaults
to 'ns'
: # > /opt/mdyalog/Jarvis/Source
2022/10/10 @ 21:35:56 - Starting Jarvis 1.11.8
2022/10/10 @ 21:35:56 - Conga copied from /opt/mdyalog/18.2/64/unicode/ws/conga
2022/10/10 @ 21:35:56 - Local Conga reference is #.Jarvis.[LIB]

Docker — it can't be this easy

Run a container:
docker run

Map host port 8080 to container port 8080:
-p 8080:8080

Map host folder (where our web service code is) to /app in the container:
-v c:\sa2\v3:/app

Set the JarvisConfig environment variable to the location of the Jarvis configuration file:
-e JarvisConfig=./JarvisConfig.jsonb

Use the dyalog/jarvis public Docker container:
dyalog/jarvis

14

Simplifying Secure, Scalable Web Services

Building a Container from an Image

Our Dockerfile

FROM dyalog/jarvis:latest
ADD ./app /app
ADD ./HttpCommand.dyalog /opt/mdyalog/Jarvis/Source

Build the image and tag it as "phonebook”
docker build -t "phonebook"”

15

Simplifying Secure, Scalable Web Services

Split into Front and Back Ends

We'll call this "Two-Tier"

Front End Database

Write Operations

Docker Compose

defines the containers (-]
h k i

that make up a service Back End

16 Simplifying Secure, Scalable Web Services

Docker Compose

Describes a collection of container images that make up a
service.

Creates a Virtual IP network that connects the images so
that they can refer to each other by name.

Supports replication of images and load balancing (more
on this later)

17

Simplifying Secure, Scalable Web Services

e Docker Compose

volumes: .
- ./phonebook-data:/phonebook Two Services

ports:

- 8080:8080

- 8088:8088
environment:

- JarvisConfig=/a

rontend. json

image: phonebook
restart: always
volumes:
- ./phonebook-data:/phonebook
ports:
- 8089:8089
environment:
- JarvisConfig=/app/backend. json
- DYALOG_JARVIS_THREAD=DEBUG
- DYALOG_JARVIS_PORT=8081
- RIDE_INIT=HTTP:*:8089

18 Simplifying Secure, Scalable Web Services

St Docker Compose

image: phonebook
volumes: \ .
- ./phonebook-data:/phonebook Two Services

ports:
- 8080:8080 Same lmage

- 8088:8088
environment:
- JarvisConfig=/app/frontend.js
- DYALOG_JARVIS_THREAD=DEBU
- RIDE_INIT=HTTP:*:808
backend:
image: phonebook
restart: always
volumes:
- ./phonebook-data:/phonebook
ports:
- 8089:8089
environment:
- JarvisConfig=/app/backend. json
- DYALOG_JARVIS_THREAD=DEBUG
- DYALOG_JARVIS_PORT=8081
- RIDE_INIT=HTTP:*:8089

19 Simplifying Secure, Scalable Web Services

St Docker Compose

image: phonebook

volumes: .
- ./phonebook-data:/phonebook \ Two Services
ports:
- 8080:8080 Same Image
- 8088:8088

Same Permanent Storage

environment:
- JarvisConfig=/app/frontend. json
- DYALOG_JARVIS_THREAD=DEBUG
- RIDE_INIT=HTTP:%:8088
backend:

image: phonebook
restart: always
volumes:
- ./phonebook-data:/phonebook
ports:
- 8089:8089
environment:
- JarvisConfig=/app/backend. json
- DYALOG_JARVIS_THREAD=DEBUG
- DYALOG_JARVIS_PORT=8081
- RIDE_INIT=HTTP:*:8089

20 Simplifying Secure, Scalable Web Services

St Docker Compose

image: phonebook

volumes: .
- ./phonebook-data:/phonebook Two Services

orts:

P 8080:8080 Same Image
- 8088:8088

environment : Same Permanent Storage

- JarvisConfig=/app/frontend. json <«
- DYALOG_ TARVIS. THREAD=DEBUG Different Jarvis Configurations
- RIDE_INIT=HTTP:%:8088
backend:
image: phonebook
restart: always
volumes:
- ./phonebook-data:/phonebook
ports:

- 8089:8089
environment:
- JarvisConfig=/app/backend. json

- DYALOG_JARVIS_THREAD=DEBUG
- DYALOG_JARVIS_PORT=8081
- RIDE_INIT=HTTP:*x:8089

21 Simplifying Secure, Scalable Web Services

it Docker Compose

image: phonebook
volumes: :
- ./phonebook-data:/phonebook Two Services
ports:
- 8080:8080 Same Image
- 8088:8088
environment:
- JarvisConfig=/app/
- DYALOG_JARVIS_THREAD=DEB Different Jarvis Configurations
- RIDE_INIT=HTTP:%:8088

backend: ‘v\\§frontend

image: phonebook clients access via port 8080
restart: always

volumes: Zero-footprint RIDE available on port 8088
- ./phonebook-data:/phonebook
ports:
- 8089:8089
environment:
- JarvisConfig=/app/backend. json
- DYALOG_JARVIS_THREAD=DEBUG
- DYALOG_JARVIS_PORT=8081
- RIDE_INIT=HTTP:*x:8089

Same Permanent Storage

22 Simplifying Secure, Scalable Web Services

services:
frontend:
image: phonebook
volumes:
- ./phonebook-data:/phonebook
ports:
- 8080:8080
- 8088:8088
environment:
- JarvisConfig=/app/frontend. json
- DYALOG_JARVIS_THREAD=DEBUG
- RIDE_INIT=HTTP:%:8088
backend:
image: phonebook
restart: always
volumes:
- ./phonebook-data:/p ook
ports:
- 8089:8089 +—

Docker Compose

Two Services

Same Image

Same Permanent Storage
Different Jarvis Configurations

frontend
clients access via port 8080
Zero-footprint RIDE available on port 8088

backend

environment:
- JarvisConfig=/app/backend. json
- DYALOG_JARVIS_THREAD=DEBUG

- DYALOG_JARVIS_PORT=80§%
- RIDE_INIT=HTTP:x:8089

~_ internal only access via port 8081
ékro—footprint RIDE available on port 8089
restart if the container crashes \

23 Simplifying Secu

re, Scalable Web Services

Running it locally

docker compose up -f docker-compose-local.

Yes, it really is that easy...

yml

24

Simplifying Secure, Scalable Web Services

Try it in the cloud

"The Cloud" (AWS)

Database

Write Operations

()

25 Simplifying Secure, Scalable Web Services

Amazon Web Services (AWS)

Acquire an AWS account (start with the free tier)
Provide credit card information

Cost to "experiment" is minimal

26

Simplifying Secure, Scalable Web Services

Amazon Web Services (AWS)

@ Billing Management Console

@

Services | Q

Billing

Bills

Payments.

Credits

Purchase orders

Cost & Usage Reports
Cost Categories

Cost allocation tags
Free Tier

Billing Conductor g

Cost Manag

Cost Explorer
Budgets

Budgets Reports
Savings Plans (9"

Preferen

Billing preferen

s
Payment metheds
Consolidated billing G

Tax seftings

b

amazon.com

B 4 @ Global ¥ Brian P Becker ¥

Billing Dashboard

AWS Billing Dashboard i

Page refresh time: Tuesday, October 11, 2022 at 8:42:34 AM EDT @
AWS summary info (O] X
Current month's total forecast Current MTD balance Prior month for the same period with trend

usb 0.14 usD 0.09 No data to display & 0.0%

Total number of active services Total number of active AWS accounts Total number of active AWS Regions

7 1 2

Highest cost info

Highest service spend v o X
Viewing highest service spend
Service name Trend compared to prior month Current MTD balance Prior month for the same period
Elastic Load Balancing No data to display UsD 0.08 No data to display
your bill
Cost trend by top five services info
Y top ' A Line v | last3monthsbyservice ¥ @& X

Viewing data over a period of 3 months.

Unified Seti

27

Simplifying Secure, Scalable Web Services

AWS Services

If you look the list of services provided by AWS, you'll find
(at least | did) a dizzying number of choices, many with
similar names...

28

Simplifying Secure, Scalable Web Services

=

Feedback

) AWS Manager

Q |

All services

Services by category

ﬁj Compute

EC2

Lightsail

Lambda

Batch

Elastic Beanstalk

Serverless Application Repository
AWS Outposts

EC2 Image Builder

AWS App Runner

Containers

Elastic Container Registry

Elastic Container Service

Elastic Kubernetes Service

Red Hat OpenShift Service on AWS

El storage

S3

EFS

FSx

S3 Glacier

Storage Gateway

AWS Backup

AWS Elastic Disaster Recovery

d Settings [A

Quantum Technologies
Amazon Braket
Management & Governance

AWS Organizations
CloudWatch

AWS Auto Scaling
CloudFormation

Config

OpsWorks

Service Catalog

Systems Manager

AWS AppConfig

Trusted Advisor

Control Tower

AWS License Manager
AWS Well-Architected Tool
AWS Health Dashboard
AWS Chatbot

Launch Wizard

AWS Compute Optimizer
Resource Groups & Tag Editor
Amazon Grafana
Amazon Prometheus
AWS Proton

AWS Resilience Hub

Security, Identity, & Compliance

1AM

Resource Access Manager
Cognito

Secrets Manager
GuardDuty

Inspector

Amazon Macie

IAM Identity Center (successor to AWS Single Sign-On)

Certificate Manager
Key Management Service
CloudHSM

Directory Service
WAF & Shield

AWS Firewall Manager
Artifact

Security Hub
Detective

AWS Signer

AWS Network Firewall
AWS Audit Manager

AWS Cost Management

AWS Cost Explorer
AWS Budgets

AWS Marketplace Subscriptions

N. Virginia ¥

Terms

Brian P Becker v

Cookie prefi

29

Simplifying Secure, Scalable Web Services

I'll find

AWS Services

If you look the list of services provided by AWS, you'll find
(at least | did) a dizzying number of choices, many with
similar names...

Fortunately, Morten, with help from Google, Norbert and
Bjorn worked out the right combination for our service.

30

Simplifying Secure, Scalable Web Services

AWS Configuration

Create an IAM user (Identity and Access Management)
Select Access Key credential type
Attach the AdministratorAccess policy
Download your credentials (in a .csv file)
Install the AWS CLI (Command Line Interface)
Google "install aws cli"
Download for your platform
Configure to use the IAM credentials from the above step

31 Simplifying Secure, Scalable Web Services

Docker/ECS

Docker Compose can be connected to the Amazon Elastic
Container Service (ECS)

Create a "docker context" for ECS
docker context create ecs phonebook

Switch to the ECS context
docker context use phonebook

32

Simplifying Secure, Scalable Web Services

Upload Image to ECR

To use our phonebook container from AWS, we need to store it either in
DockerHub or the Amazon Elastic Container Registry (ECR).

Since we already had a userid on AWS, we used ECR.
aws ecr create-repository -repository-name phonebook

Now upload the image
Logon to the ECR server using your AWS credentials

docker tag the local phonebook image on the ECR server as [youruserid]l/phonebook

docker push [youruserid]l/phonebook

Or just edit and run the push.bat file in the workshop materials.

33

Simplifying Secure, Scalable Web Services

services:

frontend: dOCker Compose
l:Tg;;sEyouruser1d]/phonebook f()r /\\AJE;

- phonebook-data:/phonebook
ports:

- target: 8080

published: 8080
x-aws-protocol: http

environment:

- JarvisConfig=/app/frontend. json

backend:

image: [youruserid]/phonebook
volumes:

- phonebook-data:/phonebook
restart: always
environment:

- JarvisConfig=/app/backend. json

- DYALOG_JARVIS_PORT=8081

volumes:
This will be created as an "Elastic File System"
phonebook-data:

driver_opts:

uid: 0

gid: 0

34 Simplifying Secure, Scalable Web Services

Scale it up

"The Cloud" (AWS)

Database

Write Operations

()

35 Simplifying Secure, Scalable Web Services

Scaling the Front End

Want 2 copies of the frontend?

docker compose -p phonebook up --scale frontend=2

You can change the scaling while the service is running

36

Simplifying Secure, Scalable Web Services

Load balance it

"The Cloud" (AWS)

Database

D Write Operations
()

Load Balancer

37 Simplifying Secure, Scalable Web Services

Making a Load Balancer

This is a bit complicated...
Create an AWS security group
Add an "Ingress" for the ports you want clients to attach to
Finally create the load balancer itself

Fortunately, Morten has written a MakeLoadBalancer function
that does all of this.

All you need to do is add an x-aws-1oadbalancer entry to the
docker compose file ‘

38

Simplifying Secure, Scalable Web Services

Own it

"The Cloud" (AWS)

Database

D Write Operations
()

Load Balancer

39 Simplifying Secure, Scalable Web Services

Using your own Domain Name

Up until now, we've had to refer to the service using a long and

cumbersome hostname like
http://phone-loadb-1guewkdOevw2h-887267469.eu-west-3.elb.amazonaws.com

If you register your own domain with an ISP allows you to do
redirection, you can have a name more to your liking.

Morten used one.com, Brian used GoDaddy.com

40

Simplifying Secure, Scalable Web Services

Secure it

Load Balancer

"The Cloud" (AWS)

Database

D Write Operations
()

411

Simplifying Secure, Scalable Web Services

Securing your service using HTTPS

Get a certificate — we used AWS Certificate Manager

ACM uses a couple simple steps to verify that you own your domain

In AWS EC2 > Load Balancers
Add a listener on port 443

42

Simplifying Secure, Scalable Web Services

In Summary

We learned a lot in preparing these workshops.
We expect to learn more.

Have we simplified the process?
Jarvis makes it fairly easy to turn your APL code into a web service.
Docker is almost ridiculously easy. (I pinch myself every time | use it)

AWS seems daunting, but if you know the services/components to use, it's
actually pretty straightforward. And we've shown you a path to get there.

43

Simplifying Secure, Scalable Web Services

In the near future

Updated workshop materials on GitHub.com/dyalog-training
Jarvis
Documentation completion (Nov 2022)
Training materials, samples, templates, webcasts
Webcast series breaking down the workshops into "bite-sized" chunks

We used AWS for the workshop; there are other services that can run Docker
containers in the cloud — Azure, Google, IBM. We may publish similar guides
for other services if our clients need it.

44

Simplifying Secure, Scalable Web Services

