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Onetime pure mathematician corrupted by exposure to 
APL loses moral compass and discovers, after several 

mis-steps, a useful numerical integration method
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Example functions to integrate

• Typical properties
– Up to 4 dimensional domain; 𝑥̅𝑥 = 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4
– Calculation of 𝐶𝐶 𝑥̅𝑥 is expensive
– ∫𝐷𝐷𝐶𝐶(𝑥̅𝑥) is concentrated in a small part of 𝐷𝐷.

10/17/202210/17/2022



A little context about the DNA evidence application
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Touch DNA evidence from a gun 𝑥𝑥 axis: DNA location or size in genome
𝑦𝑦 axis: quantity (after lab processing)

DNA evidence overlaid with 
an example partial explanation 

Bar height = assumed 
contribution proportions of 2 
color-coded people’s DNA types.
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Measuring volume under an irregular 
canopy 𝐶𝐶 𝑥𝑥1,𝑥𝑥2

Choose an initial handful of seeds (big red 
dots) at which to compute (time 
consuming!) heights ℎ𝑠𝑠 = 𝐶𝐶(𝑥𝑥1,𝑠𝑠, 𝑥𝑥2,𝑠𝑠).

Fences around each seed define its area. 
(“Voronoi cell”)

1000’s of random black dots give a Monte 
Carlo estimate of cell areas 𝑎𝑎𝑠𝑠.

Per seed 𝑠𝑠 with area 𝑎𝑎𝑠𝑠, compute height ℎ𝑠𝑠 = 𝐶𝐶
of vertical pillar/prism. Volume 𝑣𝑣𝑠𝑠 = ℎ𝑠𝑠 × 𝑎𝑎𝑠𝑠.

Total volume (Riemann sum) ∫𝐶𝐶 ≈ Σ𝑣𝑣𝑠𝑠.

𝑥𝑥1

𝑥𝑥2

ℎ

Area 𝑎𝑎1 = 4

(First idea. Quick and dirty)
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Measuring volume under an irregular 
canopy 𝐶𝐶(𝑥𝑥1, 𝑥𝑥2 , … ))

𝑦𝑦

𝑥𝑥

• For each cell 𝑠𝑠 I’ll estimate volume a 2nd

time, using new points 𝑥𝑥1,𝑠𝑠
′ , 𝑥𝑥2,𝑠𝑠

′ , . . . 
• I pick existing black (area measuring) 

points for the purpose.*
• Alternative heights ℎ𝑠𝑠′ = 𝐶𝐶 𝑥𝑥1,𝑠𝑠

′ , 𝑥𝑥2,𝑠𝑠
′ , . .

alternative volumes 𝑣𝑣𝑠𝑠′ = ℎ𝑠𝑠′ × 𝑎𝑎𝑠𝑠 . 

ℎ1′

Adaptive step: Choose 
a pillar to split in two.

Cell with larger volume difference
Δ𝑖𝑖 = 𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑠𝑠′ is better candidate for 
splitting into two cells. So split it.

ℎ1
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Pitfall with cell splitting:
“I pick existing black (area 
measuring) dots for the purpose.”*

𝑦𝑦

𝑥𝑥

• Eventually splitting dead ends 
when some small cells run out of 
black markers to split with.

• Adding a new black dot set costs 
much compute time to allocate to 
nearest Voronoi seeds.

• But there is no simple alternative.
• Voronoi boundaries (or areas) are 

difficult to compute. 
• Visit expert in Switzerland?

ℎ1′
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3

4

51

Integration by 
“Rieman sums” (with 
bars centered on 
computed heights)

Integral = area under green curve
∫ 𝐶𝐶 𝑥𝑥 ≈ Σi 𝑤𝑤 × ℎ𝑖𝑖

2

Refine by splitting bars

𝐶𝐶(𝑥𝑥)

Maybe fine.
Bar splitting requires evaluating 𝐶𝐶 𝑥𝑥 , maybe expensive.
Sometimes it’s important to economize on splitting.



Numeric integration – area (or volume or 
hypervolume …) under a curve (canopy …)

A B C D

A common situation – a small fraction of the domain 
accounts for most of the integral.

1D domain: 10% of x-axis is 1/10 of domain
2D domain: 10% of 𝑥𝑥1&𝑥𝑥2 axes is 1/100 of  domain.
3D domain: 10% of each domain axis is 1/1000 of 
domain.

Related: Volume of hypersphere inscribed in a unit 
hypercube goes rapidly to 0.



Adaptive integration
Right side height 
bars

Left side height 
bars

Right and left 
side height bars Candidates for 

refining bar fit

Refined bars Refinement strategies:
• Split a bar
• Not all bars – costly!
• Split where big Δ

area

Δ area



Adaptive integration – 2nd adaption
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Split this bar

Next refinement

Seems like a workable method in 2 dimensions 
(i.e. 1 domain dimension).

How to translate it to multiple dimension domains?



Adaptive integration summay

• (Write 𝑥̅𝑥 for the point 𝑥𝑥1,𝑥𝑥2, … 𝑥𝑥𝑛𝑛 in an n-dimensional domain.)
• In each cell, compute
 ℎ𝑖𝑖 ← 𝐶𝐶(�𝑥𝑥𝑖𝑖) at at least 2 values of 𝑥̅𝑥;
 (hyper-)volumes 𝑣𝑣𝑖𝑖 ← ℎ𝑖𝑖 × 𝑎𝑎;
 estimate of volume variation Δ𝑣𝑣 ←−/(⌈/, / 𝑣𝑣𝑖𝑖.

• Split a cell with large (largest?) Δ𝑣𝑣.
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Generalize to more dimensions
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Domain 𝑥̅𝑥 of 1 dimension:
𝑥̅𝑥 = (𝑥𝑥)

Domain 𝑥̅𝑥 of 2 dimensions: 
𝑥̅𝑥 = 𝑥𝑥1, 𝑥𝑥2

O
rd

in
at

e 
ℎ

=
𝐶𝐶(
𝑥𝑥)

Tiled with 1 dimension line 
segments

O
rd

in
at

e 
ℎ

=
𝐶𝐶(
𝑥𝑥)

𝑥𝑥1 𝑥𝑥2

𝑥𝑥1

𝑥𝑥2

Tile with squares? 
Rectangles? 

Four dimensions  --
Domain 𝑥̅𝑥 of 3 dimensions: 
𝑥̅𝑥 = 𝑥𝑥1, 𝑥𝑥2,𝑥𝑥3 . 
Tile with cubes/rectangular 
parallelepipeds?

O
rd

in
at

e 
ℎ

=
𝐶𝐶(
𝑥𝑥)

R-cubature
Problems: angle bias, 
housekeeping 



Alternative generalization – triangles etc.

10/17/2022

Domain 𝑥̅𝑥 of 1 dimension: 
𝑥̅𝑥 = 𝑥𝑥 Domain 𝑥̅𝑥 of 2 

dimensions: 𝑥̅𝑥 = 𝑥𝑥1,𝑥𝑥2

O
rd

in
at

e 
ℎ

=
𝐶𝐶(
𝑥𝑥)

Tiled with 1 dimension line 
segments

O
rd

in
at

e 
ℎ

=
𝐶𝐶(
𝑥𝑥)

𝑥𝑥1 𝑥𝑥2

𝑥𝑥1

𝑥𝑥2

Tile with triangles

Four dimensions – (domain 
𝑥̅𝑥 of 3 dimensions):               
𝑥̅𝑥 = 𝑥𝑥1, 𝑥𝑥2,𝑥𝑥3 . 
Tile with simplexes

3D simplex



Pros and Comments

Hypercube cells
+ I know volume computation: 
𝑉𝑉 ←×/𝑥̅𝑥

+ Obvious how to split
- # of cells = # of vertices

- Compute one 𝐶𝐶 𝑥̅𝑥 per new cell

+ Published papers

- Directional bias  
₋ Keeping track of split points

Simplex cells
+ Aha! Just linear algebra:    
𝑉𝑉 ← Det(𝑥̅𝑥) (Dfn by R Hui)

+ (see next slide)
+ Huge computing leverage, 

e.g. 11+ cells per vertex
 Simplices to maximize is 

published. But integrating via 
simplices may be new.

+ No directional bias
+ Housekeeping splits is simple

10/17/2022



Splitting a simplex

• Simplex definition:
– A simplex in n dimensions

• 𝑛𝑛 + 1 points connected by
• 2! 𝑛𝑛 straight lines

0-simplex
1-simplex  
2-simplex
3-simplex
… n-simplex

10/17/2022

Cut point



10/17/2022



Wrong way to split a cell

• Choose an interior point.
• Connect it to all 4 vertices.
• Cell is cut into 4 cells

with a common (new) vertex
• !!? Original edges are never

shortened!
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Pros and Comments

Splitting simplex cells
+ Huge computing leverage, e.g.

11 cells per new vertex (4D)
+ Extra cell splits are virtually 

free
 What would the 4D geometry 

look like?
 3D already permits unlimited # of 

cells to share an edge

10/17/2022

Bottom 
view



Integration algorithm in brief
• Initialize

– Tesselate domain with a handful of simplex cells.
– For each cell s and vertex ̅𝑥𝑥𝑠𝑠,𝑖𝑖, calculate and save 

all the pillar volumes 𝑣𝑣𝑠𝑠,𝑖𝑖 = 𝑎𝑎𝑠𝑠 × 𝐶𝐶(𝑥̅𝑥𝑠𝑠,𝑖𝑖).

• Iterate
– For each cell 𝑠𝑠, find its extreme edge 𝐸𝐸𝑠𝑠 –
the edge that connects the vertices 𝑣𝑣𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚 and 
𝑣𝑣𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚 of largest & smallest of the (already-
computed) pillar volumes of s.
– Find the overall most extreme edge E among all 

cells. 
– Cut within E at a cleverly chosen (how?) point.
– Split all cells that include edge E.

10/17/2022

Cut 
point

max ↑

min ↓

⌊`⌊

⌊
`
⌊



Summary & Epilogue
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• Simplex tessellation requires 11×, 4×, or 2× fewer 𝐶𝐶(𝑥̅𝑥)
calculations per cell than does cubature for 4D, 3D, or 2-
dimension domain.

• Mathematically satisfying stopping rule availed by computing 
every vertex, comparing high-side vs low-side integral 
estimation:
– 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 > Σ𝑠𝑠(𝑣𝑣𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑣𝑣𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚)

• Having decided on which edge to cut, cut where? Midway? 
(No!)
– Presently: Calculate the height at some arbitrary intermediate point, 

then predict by quadratic interpolation with the 3 height including those 
of the edge ends.

– Better idea brewing that needs a bit of housekeeping.
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Example functions to integrate
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How to generalize cell shape with 
larger # of dimensions
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Type 
size 18

Type 
size 24

Type 
size 16 Type 

size 24
Type 
size 16



10/17/2022

D

C

B

f

A

Riemann integration 
low-side ∫ estimate.

h
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D
C

B

f

A

Riemann integration
(-side height)

h



Old & New mixture models
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Then: One binary dimension – Allele size list

15         17   18     28 29   30     31.2          14 15 16   17

Now:  Two dimensions
→ Allele sizes
↑ Peak heights – continuous

D18S511D21S11D3S1358



Stochastic variation model
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1000 rfu
expected

1122 rfu
observed
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Mixture likelihood without unknowns
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Example hypothesis: 
Mixture is G+C, proportion 5:4

Stochastic 
variation



Mixture likelihood with unknowns
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D

C

BA

Low-side Riemann 
estimate
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D
C

B

A

High-side Riemann 
estimate
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Right side height 
bars

Left side height 
bars

Refinement strategies:
• Split a bar
• Not all bars – costly!
• Split where big Δ

area
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A

B

C D

E
F
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What’s the area?
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Riemann sum integration
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