Scheduling Array Operations

Juuso Haavisto (University of Oxford), October 2022

Static Semantics

Ability to detect correctness errors before

execution

Statically absurd situation:
Waterfal (Escher, 1961)

Rank Polymorphism

Language property where semantically
same thing means multiple things
depending on the context

Challenge: building connection between
static semantics

Finnish is a great language:

The spruce is on fire. = Kuusi palaa.
The spruce returns. = Kuusi palaa.

The number six is on fire. = Kuusi palaa.
The number six returns. = Kuusi palaa.
Six of them are on fire. = Kuusi palaa.
Six of them return. = Kuusi palaa.

Your moon is on fire. = Kuusi palaa.
Your moon returns. = Kuusi palaa.

Six pieces. = Kuusi palaa.

A certain kind of rank polymorphism in action

Scheduling

With static rank polymorphism, we can
give GPU a data structure that it

understands, and from which to derive
scheduling schemes for multi-core use

Vulkan

gpu
queue family

queue

r—
workgroup
subgroup
command invocation
buffer
~
-{ matrix
data _‘< vector
scalar
bitpack
-

Hierarchy of GPU

Big picture
“Moving Haskell towards Dyalog APL”

« APL programmers “see” a lot about
their programs

» but the computer... not so much

« My research is about revisiting
what the computer can “see”
without adding new language

“Array Languages vs Iversonian Languages vs Combinator Languages vs
Séema ntiCS Functional Languages” - Conor Hoekstra @code_report

Max Pooling example, Rodrigo Serrao
MX—{[#[2],[2 S{w}AN2 2p2)>Z[a] < cw}

M
{ 2 3 4
5 6 7 8
9 10 11 12 Vulkan A
13 14 15 16
{cw}d(2 2)-M

s6 |67 |78 gpu
queue family
5 6 | 6 7|7 8 queue

9 10 |10 11|11 12 SPIR-V

9 10|10 1111 12 —
13 14|14 15|15 16 workgroup
{c[fw}B(2 2)+M _subgropp
cOmmand Invocation

6 7 8
10 11 12
14 15 16

56 |67 |7 8 buffer
9 10 |10 11]11 12 h matrix
=l vector
13 14|14 15|15 16
scalar
{c[#[fw}B(2 2)+M bitpack
3

Modern Hardware

Separation in “what” and “how” we compute things

how we compute — the red part Vulkan
-> puild on top of data

gpu
queue family

queue

SPIR-V \
~

workgroup

subgroup

command Invocation

buffer

—< r_matrix
data_{ vector
what we compute — the blue part v
_Pnpack

-> APL programmers excel here L

- weirdly enough GPU people have created
instructions for APL operations already

. ... but using the correct instruction with
correct parameters requires compilation

OpGroupNonUniformFMax Capability:
GroupNonUniformArithmetic,

A floating point maximum group operation of all Value operands contributed by active invocations GroupNonUniformClustered,

in by group. GroupNonUniformPartitionedNV

Result Type must be a scalar or vector of floating-point type. Missing before version 1.3.

Execution is a Scope. It must be either Workgroup or Subgroup.

The identity / for Operation is -INF. If Operation is ClusteredReduce, ClusterSize must be
present.

The type of Value must be the same as Result Type. The method used to perform the group
operation on the contributed Value(s) from active invocations is implementation defined. From the
set of Value(s) provided by active invocations within a subgroup, if for any two Values one of them
Is @ NaN, the other is chosen. If all Value(s) that are used by the current invocation are NaN, then
the result is an undefined value.

ClusterSize is the size of cluster to use. ClusterSize must be a scalar of integer type, whose
Signedness operand is 0. ClusterSize must come from a constant instruction. Behavior is
undefined unless ClusterSize is at least 1 and a power of 2. If ClusterSize is greater than the
declared SubGroupSize, executing this instruction results in undefined behavior.

6 + variable 358 <id> Result <id> Scope <id> Group <id> Optional
Result Type Execution Operation Value <id>
Operation ClusterSize

About me
My APL short-story

* |learned about APL in 2018
» actually looked into it in 2019
 => |ove on first IDE (Dyalog)

* highly influenced by Aaron Hsu'’s
YouTube talks and thesis

Seemingly, | first learned about APL
from this PDF book: Elementary
Algebra, K.E. Iverson

app Lly«{{
i+w
node«{w{(w+1)[,right[a;], left[a;]}¢
i(wllfeature)[Ixswllth}while{wleft="1}1
out[i;]«node 1[lvalues

Jw}

My first APL program: random forest traversal

Case study: random forest prediction

Performance aspect

* Modelling of Python scikit with APL appLy={{
R
, node«{w{(w+1)0,right[a;], left[a;]}o
* [ranslating APL to SPIR-V i (wlfeature)lxswlth}while{wlleft="1}1
out[i;]«node 1flvalues
tw}

* Running SPIR-V with Vulkan

Random forest binary tree traversal in APL

TABLE I
RUNTIME COMPARISON OF RANDOM FOREST MODEL OF 150X6000X300 TREES BETWEEN CYTHON AND SPIR-V.
Device name Runtime
CPU Intel Core 17-9700 380ms
(Cython)
NVIDIA GeForce GTX 1080 Ti 318ms
GPU AMD Radeon RX 6900 XT 136ms
(SPIR-V) Apple M1 201ms

Results for small programs, memory copying remains the big bottleneck

Findings from the GPU world

- what we compute: APL programmers already think about data in a way
that multi-core devices would want all programmers to think

- how we compute: machine-solvable drudgery that builds on top of the
data representation

- challenge: how do we automate the how?

APL x Academics

Hot topics:

» static rank polymorphism (Remora @ Northeastern, Futhark @ Copenhagen,
Dex @ Google)

* application area of dependent types (ldris @ St Andrews, Granule @ Kent)
* functional programming for tensor computation (Halide @ MIT / Adobe)

e an approach to simplify parallel computation (CUDA & Legate @ Nvidia,
Matlab, Julia, Numpy, TensorFlow ... etc. machine learning applications)

E1

P s L
nl.‘,
-

\
y LGS Iy
I %.?

-

-
7R

et

/2
,..,/..Z/f_ .

VAR ,w«!

—— ——
- R i k..
S S A N T g

~ s T -
SASY AT AT R 2
A's Mo el
X WL

© o O o
o £ = N S g
Q —~ . =—))
g € >~ : © o»
C © - ¢ O 0L 3
- wm Q2 Tl o ©
ge = O & § 5 C
O =9 2 733 £
- u._LSn/W|r
o QO O =
e ran.|ntbb
© o o 29 mw.ratmm
Wnru n.fl\am.nbﬂanr_l..“
) C %%mtgnhMa
Y 2 an”r_m.mme O D
o knnuar_nm N C O € i
Sn c = 0 3 S 0o c =
© —_ O . 0 0O O >._m
E © = 5T O N e

Waterfal (Escher, 1961)

10

Types remove ambiguity

How problematic recursion can be caught

e types may express, ownership, direction, multiplicities

e linear types express ownership

.17

Finnish “koiran” - “dog’s

e dependent types express direction
Finnish “koirastani” - “from my dog”

e quantitative types tie multiplicity into ownership
Finnish “koirillanikin” - “(something) that also my dogs have”

i

R

7 - -
<L —
N Sy

S i

Typed waterfall

e types may express, ownership,
direction, multiplicities

TNy
SEAn

:

what is the direction of the water?

-

27
5.t
B

&
‘i g

where does the water come from?

e can the water be re-used?

e answering these questions
constraints the ways that a waterfall

may be built

e constraints are guides in an otherwise
random search for a solution

19 Waterfal (Escher, 1961)

Types are changing
... but so are computers

The Language Trilemma

Performance

CUDA
Futhark

Productivity Python Generality

Matlab
AL ulia

14

The Language Trilemma

Performance

CUDA
Futhark

Productivity Python Generality

Matlab
AL ulia

15

The Language Trilemma

Performance

CUDA
Futhark OpenMF
C
Productivity Python Generality

Matlab
AL ulia

16

Q: What can we gain by losing generality?

A: Static rank polymorphism

« static semantics
« - “abstract interpretation”

« - what can we know before we
start a program

» rank polymorphism

« - adds value-based “context” to
the language interpretation

17

Godel’s incompleteness
theorem: it is hard to
interpret even simple

programs

Finnish is a great language:

The spruce is on fire. = Kuusi palaa.
The spruce returns. = Kuusi palaa.

The number six is on fire. = Kuusi palaa.
The number six returns. = Kuusi palaa.
Six of them are on fire. = Kuusi palaa.
Six of them return. = Kuusi palaa.

Your moon is on fire. = Kuusi palaa.
Your moon returns. = Kuusi palaa.

Six pieces. = Kuusi palaa.

A certain kind of rank polymorphism in action

Q: Why is static rank polymorphism useful?

A: It simplifies Parallel Programming

= Subgroup Queue Queue
- Accumulators R 2 GPU size families lengths
divide-and-conquer = el 8/16/32))
+ However, dividing and conquering is AMD 52 3 16/8/1
hard when you don’t know the amount
Of ”trOOpS" Nvidia 32 3 16/8/1
« Remark: array programming languages | Adreno 64 ? ?
abstract away the execution strategy ol 6 , .
Apple M1 32 4 1/1/1/1

Varying “troops” on GPUs => need for dynamic scheduling
18

Putting it together

Vulkan

Challenge: understanding what
shapes data may have

gpu
queue family

queue

Needed for: constraints which build SPIR-V
i ~
the rest of the pyramid for us workaroup
: : : subgroup
=> can be achieved with shape analysis fommand | invocation
by employing new type systems butter_ —
matrix
7 ’” . o data
the APL way” remains — data-driven, 4 ‘:Z;}Z;
Nno unnecessary software ceremonies bitpack

19

Shape analysis

To always know how many “troops” we have!

practicality
- typing for GPUs: strong typing facilitates work splitting — efficiency

- background: nice to have a single program work for any GPU

theoretical
- advanced type system applications: what can we know beforehand

- array programming: how can we generalize, adapt the information

20

Parallelism 1s much easier with abstract
interpretation (“knowing your troops”)

Scheduling Array Operations

Juuso Haavisto (University of Oxford), October 2022

Static Semantics

Ability to detect correctness errors before

execution

Statically absurd situation:
Waterfal (Escher, 1961)

Rank Polymorphism

Language property where semantically
same thing means multiple things
depending on the context

Challenge: building connection between
static semantics

Finnish is a great language:

The spruce is on fire. = Kuusi palaa.
The spruce returns. = Kuusi palaa.

The number six is on fire. = Kuusi palaa.
The number six returns. = Kuusi palaa.
Six of them are on fire. = Kuusi palaa.
Six of them return. = Kuusi palaa.

Your moon is on fire. = Kuusi palaa.
Your moon returns. = Kuusi palaa.

Six pieces. = Kuusi palaa.

A certain kind of rank polymorphism in action

Scheduling

With static rank polymorphism, we can
give GPU a data structure that it

understands, and from which to derive
scheduling schemes for multi-core use

Vulkan

gpu
queue family

queue

r—
workgroup
subgroup
command invocation
buffer
~
-{ matrix
data _‘< vector
scalar
bitpack
-

Hierarchy of GPU

Takeaway

APLers already think in the way that new hardware wants us to ...
... however, the languages must “see” things like APLers do
=> types can help the computer to constrain, search its way out to “see”

=> this way, the types build on top of the APL arrays

let the types work for us, not the other way around
=> performance optimizations on multi-core systems, such as GPUs (SIMD use)

=> gutomatic distribution (divide and conquer strategies)

23

Questions?

