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Static Semantics 
Ability to detect correctness errors before 
execution

Rank Polymorphism 
Language property where semantically 
same thing means multiple things 
depending on the context 

Challenge: building connection between 
static semantics

A certain kind of rank polymorphism in action
Statically absurd situation: 
Waterfal (Escher, 1961)

Scheduling 
With static rank polymorphism, we can 
give GPU a data structure that it 
understands, and from which to derive 
scheduling schemes for multi-core use  

Hierarchy of GPU 



Big picture 
“Moving Haskell towards Dyalog APL”

• APL programmers “see” a lot about 
their programs 

• but the computer… not so much 

• my research is about revisiting 
what the computer can “see” 
without adding new language 
semantics

“Array Languages vs Iversonian Languages vs Combinator Languages vs 
Functional Languages” - Conor Hoekstra @code_report

2



Max Pooling example, Rodrigo Serrão
MX←{⌈⌿[2],[2 3]{⍵}⌺(2 2⍴2)⊃Z[⍺]←⊂⍵}
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• how we compute — the red part 
-> build on top of data 

• what we compute — the blue part 
-> APL programmers excel here

Modern Hardware
Separation in “what” and “how” we compute things
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• weirdly enough GPU people have created 
instructions for APL operations already 

• … but using the correct instruction with 
correct parameters requires compilation
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My APL short-story

• learned about APL in 2018


• actually looked into it in 2019


• => love on first IDE (Dyalog)


• highly influenced by Aaron Hsu’s 
YouTube talks and thesis

About me

Seemingly, I first learned about APL 
from this PDF book: Elementary 

Algebra, K.E. Iverson

My first APL program: random forest traversal
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Case study: random forest prediction
Performance aspect

• Modelling of Python scikit with APL


• Translating APL to SPIR-V


• Running SPIR-V with Vulkan
Random forest binary tree traversal in APL

Results for small programs, memory copying remains the big bottleneck7



• what we compute: APL programmers already think about data in a way 
that multi-core devices would want all programmers to think 

• how we compute: machine-solvable drudgery that builds on top of the 
data representation 

• challenge: how do we automate the how?
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Findings from the GPU world



APL x Academics
Hot topics:

• static rank polymorphism (Remora @ Northeastern, Futhark @ Copenhagen, 
Dex @ Google)  


• application area of dependent types (Idris @ St Andrews, Granule @ Kent)


• functional programming for tensor computation (Halide @ MIT / Adobe)


• an approach to simplify parallel computation (CUDA & Legate @ Nvidia, 
Matlab, Julia, Numpy, TensorFlow … etc. machine learning applications)
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Software bugs

• main challenge: recursion 

• at distance (i.e., abstractly) the 
waterfall makes no sense… 

• … but software will not realize 
something is wrong, unless we 
define constraints which 
describe how to build a waterfall 

• => the need for abstract 
interpretation

and where to find them

Waterfal (Escher, 1961)10



Types remove ambiguity

• types may express, ownership, direction, multiplicities 

• linear types express ownership 
Finnish “koiran” - “dog’s” 

• dependent types express direction 
Finnish “koirastani” - “from my dog” 

• quantitative types tie multiplicity into ownership 
Finnish “koirillanikin” - “(something) that also my dogs have”

How problematic recursion can be caught
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• types may express, ownership, 
direction, multiplicities 

• what is the direction of the water? 

• where does the water come from? 

• can the water be re-used? 

• answering these questions 
constraints the ways that a waterfall 
may be built 

• constraints are guides in an otherwise 
random search for a solution 

Waterfal (Escher, 1961)

Typed waterfall
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Types are changing 
… but so are computers
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The Language Trilemma
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The Language Trilemma
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The Language Trilemma

APL
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Q: What can we gain by losing generality?
A: Static rank polymorphism

• static semantics 

• - “abstract interpretation” 

• - what can we know before we 
start a program 

• rank polymorphism  

• - adds value-based “context” to 
the language interpretation

A certain kind of rank polymorphism in action

Gödel’s incompleteness 
theorem: it is hard to 
interpret even simple 

programs
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Q: Why is static rank polymorphism useful?
A: It simplifies Parallel Programming

• Accumulators 👎  
divide-and-conquer 👍 

• However, dividing and conquering is 
hard when you don’t know the amount 
of “troops” 

• Remark: array programming languages 
abstract away the execution strategy

GPU Subgroup 
size

Queue 
families

Queue 
lengths

Intel 8/16/32 ? ?

AMD 64 3 16/8/1

Nvidia 32 3 16/8/1

Adreno 64 ? ?

Mali 16 ? ?

Apple M1 32 4 1/1/1/1

Varying “troops” on GPUs => need for dynamic scheduling
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• Challenge: understanding what 
shapes data may have 

• Needed for: constraints which build 
the rest of the pyramid for us 

• => can be achieved with shape analysis 
by employing new type systems 

• “the APL way” remains — data-driven, 
no unnecessary software ceremonies

Putting it together
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Shape analysis
To always know how many “troops” we have!

• practicality 

• - typing for GPUs: strong typing facilitates work splitting — efficiency 

• - background: nice to have a single program work for any GPU 

• theoretical 

• - advanced type system applications: what can we know beforehand 

• - array programming: how can we generalize, adapt the information
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Parallelism is much easier with abstract 
interpretation (“knowing your troops”)
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Takeaway

• APLers already think in the way that new hardware wants us to … 

• … however, the languages must “see” things like APLers do 

• => types can help the computer to constrain, search its way out to “see” 

• => this way, the types build on top of the APL arrays 

• let the types work for us, not the other way around 

• => performance optimizations on multi-core systems, such as GPUs (SIMD use) 

• => automatic distribution (divide and conquer strategies)
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Questions?
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