
Scheduling Array Operations
Juuso Haavisto (University of Oxford), October 2022

Static Semantics
Ability to detect correctness errors before
execution

Rank Polymorphism
Language property where semantically
same thing means multiple things
depending on the context

Challenge: building connection between
static semantics

A certain kind of rank polymorphism in action
Statically absurd situation:
Waterfal (Escher, 1961)

Scheduling
With static rank polymorphism, we can
give GPU a data structure that it
understands, and from which to derive
scheduling schemes for multi-core use

Hierarchy of GPU

Big picture
“Moving Haskell towards Dyalog APL”

• APL programmers “see” a lot about
their programs

• but the computer… not so much

• my research is about revisiting
what the computer can “see”
without adding new language
semantics

“Array Languages vs Iversonian Languages vs Combinator Languages vs
Functional Languages” - Conor Hoekstra @code_report

2

Max Pooling example, Rodrigo Serrão
MX←{⌈⌿[2],[2 3]{⍵}⌺(2 2⍴2)⊃Z[⍺]←⊂⍵}

3

• how we compute — the red part
-> build on top of data

• what we compute — the blue part
-> APL programmers excel here

Modern Hardware
Separation in “what” and “how” we compute things

4

• weirdly enough GPU people have created
instructions for APL operations already

• … but using the correct instruction with
correct parameters requires compilation

5

My APL short-story

• learned about APL in 2018

• actually looked into it in 2019

• => love on first IDE (Dyalog)

• highly influenced by Aaron Hsu’s
YouTube talks and thesis

About me

Seemingly, I first learned about APL
from this PDF book: Elementary

Algebra, K.E. Iverson

My first APL program: random forest traversal
6

Case study: random forest prediction
Performance aspect

• Modelling of Python scikit with APL

• Translating APL to SPIR-V

• Running SPIR-V with Vulkan
Random forest binary tree traversal in APL

Results for small programs, memory copying remains the big bottleneck7

• what we compute: APL programmers already think about data in a way
that multi-core devices would want all programmers to think

• how we compute: machine-solvable drudgery that builds on top of the
data representation

• challenge: how do we automate the how?

8

Findings from the GPU world

APL x Academics
Hot topics:

• static rank polymorphism (Remora @ Northeastern, Futhark @ Copenhagen,
Dex @ Google)

• application area of dependent types (Idris @ St Andrews, Granule @ Kent)

• functional programming for tensor computation (Halide @ MIT / Adobe)

• an approach to simplify parallel computation (CUDA & Legate @ Nvidia,
Matlab, Julia, Numpy, TensorFlow … etc. machine learning applications)

9

Software bugs

• main challenge: recursion

• at distance (i.e., abstractly) the
waterfall makes no sense…

• … but software will not realize
something is wrong, unless we
define constraints which
describe how to build a waterfall

• => the need for abstract
interpretation

and where to find them

Waterfal (Escher, 1961)10

Types remove ambiguity

• types may express, ownership, direction, multiplicities

• linear types express ownership
Finnish “koiran” - “dog’s”

• dependent types express direction
Finnish “koirastani” - “from my dog”

• quantitative types tie multiplicity into ownership
Finnish “koirillanikin” - “(something) that also my dogs have”

How problematic recursion can be caught

11

• types may express, ownership,
direction, multiplicities

• what is the direction of the water?

• where does the water come from?

• can the water be re-used?

• answering these questions
constraints the ways that a waterfall
may be built

• constraints are guides in an otherwise
random search for a solution

Waterfal (Escher, 1961)

Typed waterfall

12

Types are changing
… but so are computers

13

The Language Trilemma

14

The Language Trilemma

15

The Language Trilemma

APL

16

Q: What can we gain by losing generality?
A: Static rank polymorphism

• static semantics

• - “abstract interpretation”

• - what can we know before we
start a program

• rank polymorphism

• - adds value-based “context” to
the language interpretation

A certain kind of rank polymorphism in action

Gödel’s incompleteness
theorem: it is hard to
interpret even simple

programs

17

Q: Why is static rank polymorphism useful?
A: It simplifies Parallel Programming

• Accumulators 👎
divide-and-conquer 👍

• However, dividing and conquering is
hard when you don’t know the amount
of “troops”

• Remark: array programming languages
abstract away the execution strategy

GPU Subgroup
size

Queue
families

Queue
lengths

Intel 8/16/32 ? ?

AMD 64 3 16/8/1

Nvidia 32 3 16/8/1

Adreno 64 ? ?

Mali 16 ? ?

Apple M1 32 4 1/1/1/1

Varying “troops” on GPUs => need for dynamic scheduling
18

• Challenge: understanding what
shapes data may have

• Needed for: constraints which build
the rest of the pyramid for us

• => can be achieved with shape analysis
by employing new type systems

• “the APL way” remains — data-driven,
no unnecessary software ceremonies

Putting it together

19

Shape analysis
To always know how many “troops” we have!

• practicality

• - typing for GPUs: strong typing facilitates work splitting — efficiency

• - background: nice to have a single program work for any GPU

• theoretical

• - advanced type system applications: what can we know beforehand

• - array programming: how can we generalize, adapt the information

20

Parallelism is much easier with abstract
interpretation (“knowing your troops”)

21

Scheduling Array Operations
Juuso Haavisto (University of Oxford), October 2022

Static Semantics
Ability to detect correctness errors before
execution

Rank Polymorphism
Language property where semantically
same thing means multiple things
depending on the context

Challenge: building connection between
static semantics

A certain kind of rank polymorphism in action
Statically absurd situation:
Waterfal (Escher, 1961)

Scheduling
With static rank polymorphism, we can
give GPU a data structure that it
understands, and from which to derive
scheduling schemes for multi-core use

Hierarchy of GPU

Takeaway

• APLers already think in the way that new hardware wants us to …

• … however, the languages must “see” things like APLers do

• => types can help the computer to constrain, search its way out to “see”

• => this way, the types build on top of the APL arrays

• let the types work for us, not the other way around

• => performance optimizations on multi-core systems, such as GPUs (SIMD use)

• => automatic distribution (divide and conquer strategies)

23

Questions?

24

