

Taming Mathematical Programming in APL (TaMPA)

Stephen M. Mansour, PhD, Misericordia University Dyalog 22, Olhao, Portugal October 12, 2022

Dyalog App Library

• TAMSTAT – TAMing STATistics Package

New features include

- Non-Parametric Statistics
- New Anova Designs
- Theoretical Probability Graphics
- ADAGE A Dyalog APL Generalized Equation Solver
- TAMSTOP TAMing STock OPtions
- TaMPA Taming Mathematical Programming in APL

What is Mathematical Programming (MP)?

- A mathematical program (MP) has three components:
 - 1. Decision Variables e.g. How much product to make $X_1, X_2, ..., X_n$
 - 2. Objective Function e.g. profit $f(X_1, X_2, ..., X_n)$
 - 3. Constraints e.g. resource limitations $g_k(X_1, X_2, ..., X_n) \le b_k$
- Linear Programming (LP) is a special case of mathematical programming where

 $f(X_1, X_2, ..., X_n) = \sum_{i=1}^n c_i X_i$, and $g_k(X_1, X_2, ..., X_n) = \sum_{i=1}^n a_{ki} X_i$.

Linear Programming

- In linear programming we can replace summations with matrix notation.
- The matrix notation for linear programming (LP) is:

 $\max_{x} c'x \text{ subject to } Ax \leq b$

- Where c is the vector of coefficients in the objective function, A is a matrix of coefficients for the constraints, b is a vector of resource limitations, and x is a vector of decision variables.
- APL is a natural way to handle linear programming due to its array handling capabilities.

APL Syntax for LP/NLP

• We propose the following syntax for linear programming (LP) or (NLP) :

NS ← 「	optimize <mark>c</mark>	x subjectTo	A x ≤	b
NS ← L	optimize <mark>f</mark>	x subjectTo	G x ≥	0
†	†	1	1	1
Result	Runs the	builds a	creates a	right
Namespace	LP/NLP	tableau	namespace	arg
maximize	← [optimi	ze A Monad	ic operat	or with left
minimize	← L optimiz	ze A oper.	produces	max or min

Key: Array Function Operator NameSpace

Example 1: Blue Ridge Hot Tubs

Hot Tub	Aqua-Spa	Hydro-Luxe	Typhoon-	Resources
Brand:			Lagoon	Available:
Unit Profit:	\$350	\$300	\$320	
Pumps Required	1	1	1	200 pumps
Labor Required	9 hours	6 hours	8 hours	1566 hours
Tubing Needed	12 feet	16 feet	13 feet	2880 feet

Questions to ask

- How many hot tubs of each type should Blue Ridge produce?
- What is the maximum profit?
- How much additional profit can be realized with additional resources?
- What are the costs of deviating from the optimal solution?

Problem formulation in mathematical notation

 X_1 = Number of Aqua-Spas to produce X_2 = Number of Hydro-Luxes to produce X_3 = Number of Typhoon-Lagoons to produce

Maximize $350X_1 + 300X_2 + 320X_3$ Subject to: $X_1 + X_2 + X_3 \le 200$ $9X_1 + 6X_2 + 8X_3 \le 1,566$ $12X_1 + 16X_2 + 13X_3 \le 2,880$ $X_1, X_2, X_3 \ge 0$ Let

	$[X_1]$		[350]	
<i>x</i> =	<i>X</i> ₂	<i>c</i> =	300	
	$[X_3]$		L320J	

	[1	1	[1		[200]
A =	9	6	8	b =	1566
	L12	16	13		2880

Maximize c'x subject to $Ax \le b$

Problem formulation using TAMPA

```
c←350 300 320 A Objective coefficients
 A←3 3p1 1 1 9 6 8 12 16 13 A Constraint coefficients
 1 1 1
 9 6 8
12 16 13
  b←200 1566 2880
                   A Resource limitations
  NS \leftarrow maximize c x subject To A x \leq b A Perform the LP
  NS.Decision
                              A Produce 122 Aqua Spas and 78 Hydro-Luxes
122 78 0
  NS.ShadowPrice A Each add'l pump available contributes $200 to profit
200 16.66666667 0 A Each add'l labor hour contributes $16.67 profit
  NS.ReducedCost A Each Typhoon-Lagoon produced reduces profit by $13.33
0 0 -13.33333333
```

NS←maximize c x subjectTo A x ≤ b

- NS← A x≤b ↓NS. []nl 2 3
- b rel Α NS.rel

 \leq

NS← c x subjectTo NS ↓NS.[]nl 2 3 T b c rel Α NS.T A Tableau 1 1 1 1 0 0 200 1566 9 6 8 0 1 0 2880 12 16 13 0 0 1

NS←maximize NS NS. []nl 2 3 Α Decision Objective ReducedCost ShadowPrice Т b С optimum rel

The x operator depends upon the structure and class of its operands

```
x+{Aαα: A Matrix a[i;j] = coefficient of ith constraint, jth variable or function array
Aωω: Relation, e.g. ≤ or train (≤,=,≥) or subjectTo function
```

```
Aω: b - right hand side of constraints
```

```
A←: Namespace containing values
```

```
2=[NC'w':αα{NS+[NS'' A Create namespace

NS.b+w ◊ NS.rel+ww A Assign values

NS.A+αα ◊ NS}ww w

NS+w A Right argument is namespace

3=[NC'αα':αα{w.c+αα ◊ G+ww A Is left operand an array?

w}ww w A Is objective a function?

NS.T+ww w A Is objective a function?

NS.T+ww w A Solution A Build tableau

c+NS.aa A Coefficients

NS.c+c

NS}
```

The optimize operator

0
)
straints
5

The primal algorithm does most of the work

[0]	Ę	Pri	nal←{			
[1]	Þ	٩V	Full Tableau Implementa	ati	ion of the Simplex Method	
[2]		Я€	Written by Steve Manson	ur	9/23/2005	
[3]		Aω	Starting Tableau (Numer	ric	c Matrix)	
[4]		A←	Revised Tableau (Numer	i c	Matrix)	
[5]			x ← 1↓ω[;0]	A	x-vector - solution to Ax=b	
[6]			c ← 1↓ω[0;]	A	Reduced cost vector	
[7]			Aj←1+cıl/c		A Index of Entering variable	
[8]			α←1+cıl/c	A	Index of Entering variable	
[9]			u←1↓ω[;α]	A	jth column of A matrix	
[10]			r←x÷u+u=0	A	Get smallest ratio	
[11]			p←u>0	A	Restrict to u>0	
[12]			b←p∧r=[/p/r	A	Bland's Anticycling Rule	
[13]			$l \leftarrow (b \setminus 0 = 4 4^{-1} \phi(0, b) \neq \omega) \iota 1$	A	Index of Leaving variable	
[14]			pr ← ω[l+1;]÷u[l]	A	Normalize pivot row	
[15]			z←ω−ω[;↑α]∘.×pr	A	Subtract various multiples of pivot row	
[16]			z[1+l;]←pr	A	Replace with normalized value	
[17]			Z	A	New Tableau	
[18]		}				

```
/ \setminus \neq + \quad , \quad , \quad , \quad \rho \land \varphi \models \Diamond \varphi \quad `` ~` ~` ~` ~ . \quad \circ ~ \circ ~ \circ ~ \circ ~ \bigcirc \bigcirc \bigcirc \square \square \square \square \blacksquare \boxtimes \square \pm \bullet \quad \diamond ~ \land \rightarrow \omega ~ \alpha ~ \nabla ~ \&
                                                    - 0
× 🔚 🔚 ← A 🔗 🔇 Search...
                                       🗙 🗸 🏂 🦕 🕀 Aa 🗛 🧩
□[0]
             -
                RunTAMPA+{
  [1]
             占
                      A Add Insert/Delete buttons
  [2]
                      A⊈ GUI.RunTAMPA HotTubs
  [3]
                      A⊈ GUI.RunTAMPA WeedWacker
  [4]
                      A⊈ GUI.RunTAMPA Blank
  [5]
                      w←{0≡ω:##.Blank ◊
             Ġ
  [6]
                           2=≢ω:Init ω ◊ ω}ω
  [7]
                     THIS.H+#.Abacus.Main
  [8]
                      #.Abacus.DialogBox.H←#.Abacus.Main
  [9]
                      f+#.Abacus.TriDocument.New 0
  [10]
                      hd←H.GetHeader f
  [11]
                      h1+hd H.New'h1' 'TaMPA'
  [12]
                      h2+hd H.New'h2' 'Taming Mathematical Programming with APL'
  [13]
                     m←H.GetMain f
  [14]
                      m.Content←#.Abacus.Grid.New ObjectiveGrid 2↑w
  [15]
                      m.Content, ←#.Abacus.Grid.New(0[1>w)ConstraintGrid 2>w
  [16]
                      t←m.Content[1]
  [17]
                      BC \leftarrow \phi H.BodyCells t
  [18]
                      BC[;3].class←⊂'orange'
  [19]
                      BC[;0].class+c'grey'
  [20]
                      ААААААААА Temporary Fix ААААААААААААААААА
             Ē
                      _←BC[;2].Content←⊂''
  [21]
                  Α
                      _←BC[;2]#.Abacus.DropDownList.New"⊂,"'<=' '>='
  [22]
                  Α
  [23]
                      [24]
                      BOPT+ ↓H.BodyCells m.Content[0]
```

Caption										— 🗆	
TaMPA Taming Mathematical Programming with APL											
Variable X1 X2 X3 Total Profit											
Decisi	on	0	0	0	0						
maximi	ze	0	0	0							
Reduce	d Cost	0	0	0							
Include	Const	raint		X1	X2	Х3	Used	Relation	Available	Shadow Prices	
1	Constr	ain	t 1	0	0	0	0	٤	0	0	
1	Constr	ain	t2	0	0	0	0	≤	0	0	
4	Constr		+ 2	0	0	0	0	1	0	0	

Add
ConstraintDelete
ConstraintAdd
VariableDelete
VariableOptimize

Cancel

Caption

TaMPA

Taming Mathematical Programming with APL

Variable	AquaSpa	Hydro-Luxe	Typhoon-Lagoon	Total Profit
Decision	0	0	0	0
maximize	350	300	320	
Reduced Cost	0	0	0	

Include	Constraint	AquaSpa	Hydro- Luxe	Typhoon- Lagoon	Used	Relation	Available	Shadow Prices
1	Pumps	1	1	1	0	≤	200	0
1	Labor	9	6	8	0	≤	1566	0
1	Tubing	12	16	13	0	≤	2880	0

Optimize

Cancel

TaMPA

Variable	AquaSpa	Hydro-Luxe	Typhoon-Lagoon	Total Profit
Decision	122	78	0	66100
maximize	350	300	320	
Reduced Cost	0	0	-13.333333333	

Include	Constraint	AquaSpa	Hydro-Luxe	Typhoon-Lagoon	Used	Relation	Available	Shadow Prices
1	Pumps	1	1	1	200	≤	200	200
1	Labor	9	6	8	1566	≤	1566	16.66666667
1	Tubing	12	16	13	2712	≤	2880	0

TaMPA

Variable	AquaSpa	Hydro-Luxe	Typhoon-Lagoon	Total Profit
Decision	108	99	0	67500
maximize	350	300	320	
Reduced Cost	0	0	-10.55555556	

Include	Constraint	AquaSpa	Hydro- Luxe	Typhoon- Lagoon	Used	Relation	Available	Shadow Prices
0	Pumps	1	1	1		≤	200	
1	Labor	9	6	8	1566	≤	1566	27.7777778
1	Tubing	12	16	13	2880	≤	2880	8.333333333

TaMPA

Variable	AquaSpa	Hydro-Luxe	Typhoon-Lagoon	Total Profit
Decision	113.2	73.6	13.2	65924
maximize	350	300	320	
Reduced Cost	0	0	0	

Include	Constraint	AquaSpa	Hydro- Luxe	Typhoon- Lagoon	Used	Relation	Available	Shadow Prices
1	Pumps	1	1	1	200	≤	200	176
1	Labor	9	6	8	1566	≤	1566	14
1	Tubing	12	16	13	2707.6	≤	2880	0
1	MaterialCost	600	500	400	110000	≤	110000	0.08

Example 2: Weedwacker Company – Make or Buy

• The company produces two types of lawn trimmers: Electric and Gas

Ľ				
		Electric Trimmers	Gas Trimmers	Total Hours
				Available
	Production	0.20 hours	0.40 hours	10,000
	Assembly	0.30 hours	0.50 hours	15,000
	Packaging	0.10 hours	0.10 hours	5,000
	Cost to Make	\$55	\$85	
	Cost to Buy	\$67	\$95	
	Number required	15,000	30,000	

c←55 85 67 95 A←1 0 1 0 0 1 0 1 .2 .4 0 0 A,←.3 .5 0 0 .1 .1 0 0 A←5 4pA b+30000 15000 10000 15000 5000 rel ← = , = , ≤ , ≤ , ≤ NS←minimize c x subjectTo A x rel b NS.Decision 30000 10000 0 5000 NS.Objective A Total Cost 2975000 NS.ShadowPrice 60 95 -25 0 0 NS.ReducedCost 0 0 7 0

Caption

TaMPA

Variable	M1	M2	B1	B 2	Total Cost
Decision	30000	10000	0	5000	2975000
minimize	55	85	67	95	
Reduced Cost	0	0	7	0	

Include	Constraint	M1	M2	B1	B 2	Used	Relation	Available	Shadow Prices
1	D1	1	0	1	0	30000	=	30000	60
1	D2	0	1	0	1	15000	=	15000	95
1	Production	0.2	0.4	0	0	10000	≤	10000	-25
1	Assembly	0.3	0.5	0	0	14000	≤	15000	0
1	Packaging	0.1	0.1	0	0	4000	≤	5000	0

Example 3: Garden City Beach – How Many Lifeguards?

• Each summer, the city hires lifeguards to assign five consecutive days each week followed by two days off. The city's insurance company requires the minimum number of lifeguards each day:

Day	Sun	Mon	Tue	Wed	Thu	Fri	Sat
	Day 0	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6
Lifeguards	18	17	16	16	16	14	19
Required							

Let X_i = Number of workers who start on the following Day: i.e. Day
 7 | i + 1

MIN

 $\begin{array}{l} X_0 + X_1 + X_2 + X_3 + X_4 + X_5 + X_6 \\ \text{ST} \qquad X_1 + X_2 + X_3 + X_4 + X_5 \ge 18 \\ \qquad X_2 + X_3 + X_4 + X_5 + X_6 \ge 17 \\ \qquad X_0 + X_3 + X_4 + X_5 + X_6 \ge 16 \\ \qquad X_0 + X_1 + X_4 + X_5 + X_6 \ge 16 \\ \qquad X_0 + X_1 + X_2 + X_5 + X_6 \ge 16 \\ \qquad X_0 + X_1 + X_2 + X_3 + X_6 \ge 14 \\ \qquad X_0 + X_1 + X_2 + X_3 + X_4 \ge 19 \\ \qquad X_i \ge 0 \end{array}$

EX3←□NS '' EX3.A $\leftarrow (-i7)\phi \circ 0$ 1 $\vdash 1$ 5 1/0 1 0 EX3.b+18 17 16 16 16 14 19 EX3.c+7/1EX3.optimum←L EX3.rel+≥,≥,≥,≥,≥,≥,≥ EX3←LP EX3 EX3.Decision 4.6 1.6 5.6 1.6 5.6 3.6 0.6 EX3+IP EX3 A Must be integer EX3.Decision 3 3 5 0 8 2 3 EX3.Objective 24

Conclusion

- Optimization techniques can extended to the following
 - LP Linear Programming
 - IP Integer Programming
 - TP Transportation Problem
 - NLP Non-linear Programming
- We can use HTML Renderer via Abacus to generate the user interface.
 - Insert and Delete Rows and Columns
 - Use Checkboxes and Drop-Downs where useful.
- Web site and Documentation
 - <u>www.tamstat.com</u>
 - Paper: Optimizing with Defined Operators