
Taming Mathematical 
Programming in APL 
(TaMPA)
Stephen M. Mansour, PhD,
Misericordia University

Dyalog 22, Olhao, Portugal
October 12, 2022



Dyalog App Library

• TAMSTAT – TAMing STATistics Package 
New features include
• Non-Parametric Statistics
• New Anova Designs
• Theoretical Probability Graphics

• ADAGE – A Dyalog APL Generalized Equation Solver
• TAMSTOP –TAMing STock OPtions
• TaMPA – Taming Mathematical Programming in APL



What is Mathematical Programming (MP)?

• A mathematical program (MP) has three components:
1. Decision Variables – e.g. How much product to make    𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛
2. Objective Function  - e.g. profit    𝑓𝑓 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛
3. Constraints – e.g. resource limitations 𝑔𝑔𝑘𝑘 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 ≤ 𝑏𝑏𝑘𝑘

• Linear Programming (LP) is a special case of mathematical 
programming where
𝑓𝑓 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 = ∑𝑖𝑖=1𝑛𝑛 𝑐𝑐𝑖𝑖𝑋𝑋𝑖𝑖, and 
𝑔𝑔𝑘𝑘 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 = ∑𝑖𝑖=1𝑛𝑛 𝑎𝑎𝑘𝑘𝑖𝑖𝑋𝑋𝑖𝑖 .



Linear Programming

• In linear programming we can replace summations with matrix 
notation.

• The matrix notation for linear programming (LP) is:
max
𝑥𝑥

𝑐𝑐′𝑥𝑥 subject to  𝐴𝐴𝑥𝑥 ≤ 𝑏𝑏

• Where c is the vector of coefficients in the objective function, A is a 
matrix of coefficients for the constraints, b is a vector of resource 
limitations, and x is a vector of decision variables. 

• APL is a natural way to handle linear programming due to its array 
handling capabilities.



APL Syntax for LP/NLP  
• We propose the following syntax for linear programming (LP) or (NLP) :

NS ← ⌈ optimize c x subjectTo A x ≤    b
NS ← ⌊ optimize f x subjectTo G x ≥ 0 

--------- -------------- ------------------ --------- ---

↑        ↑                  ↑             ↑         ↑

Result     Runs the        builds a      creates a   right

Namespace    LP/NLP          tableau       namespace   arg

maximize ← ⌈ optimize ⍝ Monadic operator with left 
minimize ← ⌊ optimize ⍝ oper. produces max or min 

Key:         Array Function Operator      NameSpace



Example 1:  Blue Ridge Hot Tubs

Hot Tub 
Brand:

Aqua-Spa Hydro-Luxe Typhoon-
Lagoon

Resources 
Available:

Unit Profit: $350 $300 $320

Pumps 
Required

1 1 1 200 pumps

Labor 
Required

9 hours 6 hours 8 hours 1566 hours

Tubing 
Needed

12 feet 16 feet 13 feet 2880 feet



Questions to 
ask

• How many hot tubs of each type 
should Blue Ridge produce?

• What is the maximum profit?
• How much additional profit can 

be realized with additional 
resources?

• What are the costs of deviating 
from the optimal solution?

This Photo by Unknown Author is licensed under CC BY

https://www.flickr.com/photos/eileenmak/5156330660/in/photolist-8RDxsL-c6FFgh-8nbzfX-8neGnj-8nbzii-8neGm9-95wNko-cd2ZW9-a64iWU-bGWApH-8Svz5q-VZy6G-oCr55c-FfBzX-vXbpd5-4Fmytv-vXbBrJ-wTsUQo-JvGapb-4Zr9YF-vXkdxt-wUcCrD-vXk3Pk-vXkfyT-wBAkFd-vXk3ni-4VTqCS-4kmHRx-7NMsHk-Eoft1r-2dZ9Vjx-8cxKKh-2h5U861-e4Bfpd-6myKb-8cxKS3-J3SSWB-rRHgV-EtgcP-23oN47N-24LGVdz-yTzSx-9nMWxp-Tf2uEQ-xv3wVv-7WQkVR-51wMQ6-6PULu9-7dJonQ-6768jC
https://creativecommons.org/licenses/by/3.0/


Problem formulation in mathematical 
notation

𝑋𝑋1 = Number of Aqua-Spas to produce
𝑋𝑋2 = Number of Hydro-Luxes to produce
𝑋𝑋3 = Number of Typhoon-Lagoons to produce

Maximize 350𝑋𝑋1 + 300𝑋𝑋2 + 320𝑋𝑋3
Subject to: 𝑋𝑋1+ 𝑋𝑋2+ 𝑋𝑋3 ≤ 200

9𝑋𝑋1 + 6𝑋𝑋2 + 8𝑋𝑋3 ≤ 1,566
12𝑋𝑋1 + 16𝑋𝑋2 + 13𝑋𝑋3 ≤ 2,880

𝑋𝑋1,𝑋𝑋2,𝑋𝑋3 ≥ 0

Let 

𝑥𝑥 =
𝑋𝑋1
𝑋𝑋2
𝑋𝑋3

𝑐𝑐 =
350
300
320

𝐴𝐴 =
1 1 1
9 6 8

12 16 13
𝑏𝑏 =

200
1566
2880

Maximize 𝑐𝑐𝑐𝑥𝑥 subject to 𝐴𝐴𝑥𝑥 ≤ 𝑏𝑏



Problem formulation using TAMPA
c←350 300 320   ⍝ Objective coefficients

A←3 3⍴1 1 1 9 6 8 12 16 13   ⍝ Constraint coefficients

1  1  1
9  6  8

12 16 13 

b←200 1566 2880              ⍝ Resource limitations

NS←maximize c x subjectTo A x ≤ b ⍝ Perform the LP

NS.Decision ⍝ Produce 122 Aqua Spas and 78 Hydro-Luxes

122 78 0

NS.ShadowPrice ⍝ Each add’l pump available contributes $200 to profit

200 16.66666667 0 ⍝ Each add’l labor hour contributes $16.67 profit

NS.ReducedCost ⍝ Each Typhoon-Lagoon produced reduces profit by $13.33
0 0 ¯13.33333333



NS←maximize c x subjectTo A x ≤ b

NS← A x≤b
↓NS.⎕nl 2 3

A    b   rel
NS.rel

≤
NS←  c x subjectTo NS
↓NS.⎕nl 2 3

A   T    b     c    rel
NS.T   ⍝ Tableau

200  1  1  1 1 0 0
1566  9  6  8 0 1 0
2880 12 16 13 0 0 1

NS←maximize NS
NS.⎕nl 2 3

A          
Decision   
Objective  
ReducedCost
ShadowPrice
T          
b          
c          
optimum    
rel



The x operator depends upon the structure 
and class of its operands
x←{⍝⍺⍺:  A Matrix  a[i;j] = coefficient of ith constraint, jth variable  or function array

⍝⍵⍵:  Relation, e.g. ≤ or train (≤,=,≥) or subjectTo function

⍝⍵:   b - right hand side of constraints

⍝←:   Namespace containing values

2=⎕NC'⍵':⍺⍺{NS←⎕NS''        ⍝ Create namespace

NS.b←⍵ ⋄ NS.rel←⍵⍵      ⍝ Assign values

NS.A←⍺⍺ ⋄ NS}⍵⍵ ⍵

NS←⍵                        ⍝ Right argument is namespace

3=⎕NC'⍺⍺':⍺⍺{⍵.c←⍺⍺ ⋄ G←⍵⍵  ⍝ Is left operand an array?

⍵}⍵⍵ ⍵                  ⍝ Is objective a function?

NS.T←⍵⍵ ⍵                   ⍝ Build tableau

c←NS.⍺⍺                     ⍝ Coefficients

NS.c←c

NS}



The optimize operator



The primal algorithm does most of the work  











Removing a Constraint



Adding a Constraint



Example 2:  Weedwacker Company – Make or Buy
• The company produces two types 

of lawn trimmers:  Electric and Gas
c←55 85 67 95

A←1 0 1 0 0 1 0 1 .2 .4 0 0 

A,←.3 .5 0 0 .1 .1 0 0

A←5 4⍴A

b←30000 15000 10000 15000 5000

rel←=,=,≤,≤,≤ 

NS←minimize c x subjectTo A x rel b

NS.Decision 

30000 10000 0 5000

NS.Objective  ⍝ Total Cost

2975000

NS.ShadowPrice 

60 95 ¯25 0 0      

NS.ReducedCost 

0 0 7 0





Example 3:  Garden City Beach – How Many Lifeguards?
• Each summer, the city hires lifeguards to assign five 

consecutive days each week followed by two days 
off.  The city’s insurance company requires the 
minimum number of lifeguards each day:

• Let 𝑋𝑋𝑖𝑖 = Number of workers who start on the following Day:  i.e. Day 
7|i+1

EX3←⎕NS ‘’
EX3.A←(-⍳7)⌽⍤0 1⊢1 5 1/0 1 0
EX3.b←18 17 16 16 16 14 19 
EX3.c←7/1
EX3.optimum←⌊
EX3.rel←≥,≥,≥,≥,≥,≥,≥       
EX3←LP EX3
EX3.Decision 

4.6 1.6 5.6 1.6 5.6 3.6 0.6
EX3←IP EX3 ⍝ Must be integer
EX3.Decision

3 3 5 0 8 2 3
EX3.Objective

24



Conclusion

• Optimization techniques can extended to the following
• LP – Linear Programming
• IP  - Integer Programming
• TP – Transportation Problem
• NLP – Non-linear Programming

• We can use HTML Renderer via Abacus to generate the user interface.
• Insert and Delete Rows and Columns
• Use Checkboxes and Drop-Downs where useful.

• Web site and Documentation
• www.tamstat.com
• Paper:  Optimizing with Defined Operators

http://www.tamstat.com/
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