
Olhão 2022

Building Web Services
with Jarvis
(Workshop SA2)

Brian Becker

Building Web Services with Jarvis1

 The hotel has allotted one "snack" per attendee at the
breaks. Please respect that.

 Please fill out the Workshop Feedback form:
 Preferably after the workshop

 If you are not comfortable giving the filled out form to me, there
will be someone outside the room after the workshop to collect
them.

 If you want me to fill out the form for you, I will ☺

A Few Administrative Items

Building Web Services with Jarvis2

 A bit about me…
 https://aplwiki.com/wiki/Brian_Becker

 And you?
 Three ~1-hour sections with two 15-minute breaks

 Introduction to Web Services and Jarvis
 Break

 Jarvis Configuration and Web Service Design
 Break

 Sample "Phonebook" App

Introductions and Agenda

Building Web Services with Jarvis3

 Be able to define a simple web service

 Understand most of the "important" Jarvis configuration settings

 Understand what's available in Jarvis to build more complex services

 Get your feedback

 Not an objective: teach you in depth Jarvis or HTTP

Objectives for this Workshop

Building Web Services with Jarvis4

 Ask questions!

 But please be mindful of time and the specificity of the question.

 Offer suggestions

 Features you'd like to see or think Jarvis should have

 Techniques – is there a better way to do something?

 Internally, Jarvis uses(⎕IO ⎕ML)←1 and today's exercises will as well

 Your application code can use whatever best suits you

 We will be starting a lot of instances of Jarvis today. Best practice is to close
the instance before opening another to avoid "port in use" conflicts.

Miscellaneous Stuff…

Building Web Services with Jarvis5

 How many of you have:
 Used a web service either directly or indirectly?

 Written a web service?

 Used Jarvis?

 Understand HTTP – cookies, headers, methods, etc?

Quick Survey

Building Web Services with Jarvis6

When you see [SA2] in text and examples, it refers to
the folder where you installed the SA2 workshop
materials.

✓ SA2 materials downloaded?

✓ Jarvis downloaded?

✓ Local port available?

On Your Mark…

Building Web Services with Jarvis7

⍝ Start Dyalog APL

)clear

sum←{+/⍵}

rotate←⌽

]load [SA2]/Jarvis

Get Set…

Building Web Services with Jarvis8

⍝ you can specify a port other than 8080 if necessary

j←1⊃Jarvis.Run 8080 #

]open http://localhost:8080

]load HttpCommand

(HttpCommand.GetJSON 'post' 'localhost:8080/sum' (⍳5)).Data

Go!

http://localhost:8080/

Building Web Services with Jarvis9

 We defined and started a web service

 Defined "endpoints" for the service

 Started the service

 Used a browser to open a page that contained a JavaScript client to
communicate with the service

 Used HttpCommand as a client

What did we just do?

Building Web Services with Jarvis10

 Web Service

 Uses HTTP

 Machine-to-machine

 Variety of clients

 Python, C#, APL, JavaScript

 Specific API

 Web Server

 Uses HTTP

 Human interface

 Client is typically a browser
using HTML/CSS/JavaScript

Web Service or Web Server

Building Web Services with Jarvis11

 JSON and REST Service

 Supports two "paradigms" - JSON and REST

 A service can run only one paradigm

 Jarvis' ancestry
 Originally written as JSONServer in December 2017 for a client over a

weekend

 Core HTTP server has been in use for many years

 REST capability was added at a client's request and renamed Jarvis

Introducing Jarvis

Building Web Services with Jarvis12

 Assume as little as possible about how the user will use it

 Be flexible - gives the user the flexibility to use Jarvis as he deems best, not how I dictate.

 CodeLocation can be a ref, a name of a ref, or a folder specification

 Configuration parameters can be specified in a configuration file, a namespace passed to the constructor,
or set individually.

 Provide sensible default behavior to hide some of the nuances of HTTP and web services, but
also provide low-level access for the users who need it.

 Use "hooks" for the user to inject code into the flow at obvious points.

 Startup, at the start of each request, session initialization, authentication, …

 If you feel the need to modify the Jarvis code itself – we probably need to add another hook.

 Need-driven design – if you need it, we'll try to put it in

 CORS support and the REST paradigm are two examples

Jarvis Design Philosophy

Building Web Services with Jarvis13

 The HTTP method, URI, and payload
specify what to do.

 Standard HTTP methods for operations

GET – retrieve a resource
POST – create a resource
PUT – replace a resource
PATCH – update a resource
DELETE – delete a resource

 URI Endpoints are "resources"

 Payloads are often JSON or XML

The GitHub REST API is a good example
https://docs.github.com/en/rest/repos/repos

GitHub API (abbreviated) Examples

 Get the commits for a repository
GET /repos/Dyalog/Jarvis/commits

 Create an organization repository
POST /orgs/Dyalog/repos

{"name":"NewRepo"}

 Update a repository
PATCH /repos/Dyalog/Jarvis

{"name":"NewName"}

REST

https://docs.github.com/en/rest/repos/repos

Building Web Services with Jarvis14

GitHub Web Service REST Example
]load HttpCommand

#.HttpCommand

⊢ r ← HttpCommand.Get 'https://api.github.com/orgs/dyalog-training/repos'
[rc: 0 | msg: | HTTP Status: 200 "OK" | ⍴Data: 43023]

100↑r.Data
[{"id":537497880,"node_id":"R_kgDOIAmRGA","name":"2022-SA1","full_name":"dyalog-training/2022-SA1","

⊢ r ← HttpCommand.GetJSON 'get' 'https://api.github.com/orgs/dyalog-training/repos'
[rc: 0 | msg: | HTTP Status: 200 "OK" | ⍴Data: 8]

r.Data.name
2022-SA1 2022-SA2 2022-TP2 2022-SA3 2022-SP1 2022-SP2 2022-TP3 .github

↑r.Data.(name updated_at)
2022-SA1 2022-10-05T08:28:28Z
2022-SA2 2022-10-05T21:24:30Z
2022-TP2 2022-09-21T11:29:37Z
2022-SA3 2022-09-24T06:56:29Z
2022-SP1 2022-09-28T13:04:05Z
2022-SP2 2022-10-06T14:00:03Z
2022-TP3 2022-09-29T18:23:40Z
.github 2022-10-06T13:35:40Z

Building Web Services with Jarvis15

 Write a function for each HTTP method that your service will support
 response ← GET request

request is the request object
response is the response payload

 The function will parse the path and endpoint to identify the resource

GET /customers ⍝ get all customers
GET /customers/10 ⍝ get customer 10 information
GET /customers/10/invoices ⍝ get customer 10's invoices

 There are other principles that help determine a service's "RESTfulness" including:
 Statelessness

 Caching of responses

Jarvis does not address these

REST Paradigm

Building Web Services with Jarvis16

 Endpoints are result-returning monadic or dyadic APL functions
 Right argument is the request payload

 Optional left argument is the request object itself

 All requests use HTTP POST method

 Request and response payloads are JSON
 Jarvis handles all conversion between JSON and APL formats

JSON Paradigm

Building Web Services with Jarvis17

REST
 Good for "database" applications

CRUD – create, read, update, delete

 API requires thought/discipline
For instance, how to implement a query?
get /customers/country/Denmark
get /customers?country=Denmark

 Need to understand HTTP requests

 HTTP Method, Path, Query Parameters,
Headers, Payload, Status Codes

JSON
 Good for functional endpoints

 API is more flexible

 API is easier to implement

 Probably suits the "APL mindset" better

 Understanding HTTP requests is useful
but generally necessary

REST or JSON?

Building Web Services with Jarvis18

To send a request to a Jarvis service running the JSON paradigm, the
client performs the following:

 Specify the host and endpoint

 http://localhost:8080/sum

 Specify the payload/data/body in JSON format

 [2,4,6]

 Specify the content-type as 'application/json'

 Specify the HTTP method as POST

JSON Paradigm

Building Web Services with Jarvis19

POST /sum HTTP/1.1
Host: localhost:8080
User-Agent: Dyalog-HttpCommand/5.1.3
Accept: */*
Content-Type: application/json
Content-Length: 7

[2,4,6]

Headers

Payload

HTTP Method
Host Address

Endpoint

Anatomy of a JSON HTTP Request

Building Web Services with Jarvis20

JavaScript
var xhr = new XMLHttpRequest();
xhr.open("POST", http://localhost:8080/sum);
xhr.setRequestHeader("content-type", "application/json");
xhr.send("[1,2,3,4]");
xhr.response;

PowerShell
$url = http://localhost:8080/sum
$hdrs = @{'content-type' = 'application/json'}
$body = '[1,3,5,7,9,11]'
Invoke-WebRequest –Method Post –URI $url –Headers $hdrs –Body $body

Python

import requests
import json
url = 'http://localhost:22333/sum'
hdrs = {"content-type":"application/json"}
array = [2,4,6,8]
resp = requests.post(url, data=json.dumps(array), headers=hdrs)
print(resp.json())

curl curl -d "[1,2,3,4,5]" -H "content-type:application/json" http://localhost:8080/sum

APL HttpCommand.GetJSON 'post' 'localhost:8080/sum' (⍳5)

Client Examples

http://localhost:8080/sum
http://localhost:8080/sum

Building Web Services with Jarvis21

 Stateful or Stateless?
 Does your service need to maintain "state" between requests?
 If so, where to maintain that state? On the client or in the server?

 Security?
 HTTPS
 Authentication/Authorization

 Scalability?
 Come to the Deploying Services workshop ☺

Some Web Service Design Questions

Building Web Services with Jarvis22

 Lightweight, language-neutral, data-interchange format

 https://www.json.org/json-en.html
 Scroll down to Languages section

JSON Briefly

https://www.json.org/json-en.html

Building Web Services with Jarvis23

 JSON is a natural and complementary fit with APL

 ⎕JSON converts between JSON and APL representations

 APL arrays with rank >1 can be split to make vectors of vectors (of vectors…)

JSON and APL

JSON APL

Number 42 42

String "hello" 'hello'

Array [2, "hello"]
[[1,2,3],["hi","there"]]

2 'hello'
(1 2 3)('hi' 'there')

Object {"number": 2,
"greeting":"hello"}

obj←⎕NS ''
obj.(number greeting)←2 'hello'

Building Web Services with Jarvis24

 Can be specified
 in a JarvisConfig JSON file

 in environment variables (must use Jarvis workspace)
or in the constructor argument to the Jarvis class

 directly in the Jarvis instance

Settings take precedence in the order above

We'll refer to the collection of settings as "JarvisConfig"

Jarvis Configuration Settings

Building Web Services with Jarvis25

 Jarvis.dws
 At least one Jarvis config setting must be set as an environment variable

 Jarvis.dyalog
 Create an instance

 Set configuration

 And go!

 dyalog/Jarvis Docker container
 a public container found on DockerHub https://hub.docker.com/dyalog/jarvis

Running Jarvis

https://hub.docker.com/dyalog/jarvis

Building Web Services with Jarvis26

 j←⊃Jarvis.Run args – create and start a Jarvis server

 j←Jarvis.New args – create a Jarvis server

 j.Start – start the Jarvis server

 j.Stop – stop the Jarvis server

 j.Config – show the Jarvis server's configuration

Useful Functions

Building Web Services with Jarvis27

 r←Jarvis.Run args – creates and starts a Jarvis server

 args is one of:

 a character vector containing either the name of a JarvisConfig file or CodeLocation

 a reference to a JarvisConfig namespace

 [1] the port Jarvis is to list on
[2] CodeLocation
[3] (optional) the paradigm to use ('JSON' or 'REST'). Default is 'JSON'
[4] (optional) the name of a JarvisConfig file or reference to a JarvisConfig namespace

 r is
[1] a reference to the Jarvis instance
[2] a return code (0 means "OK" and Jarvis was started, non-zero means error)
[3] a (hopefully useful) message if the return code is non-zero

 If you forget to capture the result of Jarvis.Run, you can use j←⊃⊃⎕INSTANCES Jarvis

 Jarvis.New takes the same arguments as Jarvis.Run but just returns a reference to the instance

Jarvis.Run and Jarvis.New

Building Web Services with Jarvis28

 is where Jarvis looks for your code

 Namespace reference or name: #.myAPI or '#.myAPI'
Jarvis.Run 8080 #

 Folder name: either fully qualified or relative to:

 Workspace if not CLEAR WS

 Folder of JarvisConfig file if it exists

 Jarvis' source folder (assuming you loaded Jarvis from file)

CodeLocation

Building Web Services with Jarvis29

HTML Interface
 Jarvis is not a web server but it can serve static HTML content and has a built-

in, simple, HTML interface.

 This interface was developed for demonstration and testing purposes.

 It is useful for for showing what endpoints are exposed.

 The HTMLInterface configuration setting controls the HTMLInterface:

 0 means disable any HTML interface

 1 (the default) means enable the built-in HTML interface

 The name of a folder or file containing the content for an HTML interface
This is how TryAPL.org works.

Building Web Services with Jarvis30

HTML Interface

Building Web Services with Jarvis31

 By default, all functions in CodeLocation (and below) are exposed as endpoints.

 j←Jarvis.Run 8081 '[SA1]/SampleCodeLocation'
]open https://localhost:8081

 Use IncludeFns and ExcludeFns which are vector(s) of:

 Function names: 'sum' 'rotate'

 Strings with wildcards: 'hidden.*'

 regex: "^[A-Z].*"

 Any combination of the above

IncludeFns is run before ExcludeFns

Exposing and Hiding Endpoints

https://localhost:8081/

Building Web Services with Jarvis32

settings←⎕NS ''
settings.Port←8882
settings.CodeLocation←'[SA2]/SampleCodeLocation'
settings.ExcludeFns←'hidden.*' 'utils.HideMe'

j←Jarvis.New settings
j.Start
j.Stop

)ed file://[SA2]/SampleCodeLocation/JarvisConfig.json
j←Jarvis.New '[SA2]/SampleCodeLocation/JarvisConfig.json'
j.Start
j.Stop

Tying some of the pieces together…

file://[SA2]/SampleCodeLocation/JarvisConfig.json

Building Web Services with Jarvis33

Up to now we've used simple monadic functions as our endpoints.

 If you have a dyadic (or ambivalent) function, a reference to the HTTP
Request object is passed as the left argument.

 This provides access to metadata for the request that can be used to
further validate the request.

 It also makes it easier for us to "be a good citizen" and conform to some
common practices for web services.

Ready for the next level?

Building Web Services with Jarvis34

 An instance is created for each HTTP request received by Jarvis.

 The two main uses for the request are:
 querying request parameters sent by the client

 headers, cookies, peer certificate, among others

 managing response content to be send back by Jarvis

 HTTP status code and message, and the payload

 Simple web services may never need to use Request

Request Object

Building Web Services with Jarvis35

 {status}←{message} Fail HTTPStatus
{status}←{message} SetStatus HTTPStatus
Sets the HTTP response status code and status message
If message is not supplied, use the standard message (if there is one) for the code

 value←GetCookie name
Return the value of the cookie named name or '' if no cookie with that name exists.

 value←GetHeader name
Return the value of the HTTP header named name or '' if no header with that name exists.

 name SetCookie cookie
Set a response cookie. cookie is the cookie value with optional additional cookie settings
appended and separated by ';'

 name SetHeader header
Set a response header

Useful Request Functions

Building Web Services with Jarvis36

 Response – reference to a namespace containing Status,
StatusText, and Payload

 Server – reference to the Jarvis server instance

 Session – reference to the session namespace, if using sessions

 EndPoint – the endpoint for the request

 Password – if using HTTP Basic authentication, the supplied password

 UserID – if using HTTP Basic authentication, the supplied user ID.

Some Request Object Fields

Building Web Services with Jarvis37

 HTTP statuses reflect the success or
failure of the server to satisfy the request

 Jarvis will set appropriate HTTP status
codes for conditions it detects.

 Success

 Endpoint not found

 Unauthorized request

 You can use req.SetStatus inside your
endpoints to set appropriate statuses.

 2xx – success
200 - Success
201 - Created
204 - No content

 4xx – Client Error
400 - Bad Request
401 - Unauthorized
403 - Forbidden
404 - Not found
405 - Method not allowed

 5xx – Server Error
500 - Internal server error

HTTP Response Statuses

Building Web Services with Jarvis38

 Jarvis has several "hooks" where you can inject your code.
You set a hook by assigning the name of your function that implements the
hook to one of the following:
AppInitFn – called when Jarvis starts
AppCloseFn – called when Jarvis stops
SessionInitFn – called when a new session is created (sessioning must be enabled)
AuthenticateFn – called on every request
ValidateRequestFn – called when the request is received but before Jarvis starts processing
the request

 All of the hooks take a Request object as their right argument and return 0
if there is no error.

 If you do not specify a hook, Jarvis uses {0} as its definition.

Hooks

Building Web Services with Jarvis39

 We know that our application code won't fail.

 And we're confident that Jarvis itself is without flaw.

 And users always send us the data we're expecting.

 But just in case that smallest of possibilities happens and
things don't behave as we expect…

 Here are some tips to help you debug a Jarvis web service…

Debugging

Building Web Services with Jarvis40

 Jarvis.Debug←0
No debugging, Jarvis traps all errors and reports them as 500

 Jarvis.Debug←1
Jarvis suspends on any error

 Jarvis.Debug←2
Jarvis suspends just prior to calling user endpoints or hooks

 Jarvis.Debug←4
Jarvis suspends just after receiving the client request

 Values are additive: 5 = 1+4

Debugging

Building Web Services with Jarvis41

 When you have a reproducible error, but don't try to reproduce it from a client
running in the same APL process as Jarvis. In other words, don't use HttpCommand
to produce the error from the same session that Jarvis is running in.

 Then, in the Jarvis process, set Jarvis.Debug←1.

 Switch to the client process and issue the request that causes the error.

 Switch back to the Jarvis process (it should be suspended) and do your normal
debugging.

 Set Jarvis.Debug←0 and try to reproduce the error from the client

 To debug your endpoint or hook code, Jarvis.Debug←2 and use the debugger to
step through your code.

Debugging

Building Web Services with Jarvis42

 Check the configuration using j.Config

 Use the built-in HTML interface to query and test
endpoints. j.HTMLInterface←1

 If you need to change Jarvis settings, it's safest to stop the
server, make the changes, and start the server again.

Other Debugging Aids/Hints

Building Web Services with Jarvis43

 Client side
 All necessary state is "bundled" by the client in the request,

updated and bundled in the response by the server endpoint.

 This is how TryAPL.org works.

 Good for distributed/load balanced applications – it doesn't matter
which server instance handles the request

Maintaining State between Requests

Building Web Services with Jarvis44

 Server side
 When a session starts, Jarvis creates

 a session namespace

 a session ID that is either sent as a cookie or a header

 the cookie or header must be sent with every subsequent request to
maintain session continuity. Cookies are preferred as they are sent
automatically by many clients.

 In a distributed/load balanced applications – you may need to make
the request "sticky" so subsequent requests are handled by the same
server

Maintaining State between Requests

Building Web Services with Jarvis45

Session Configuration Settings
SessionIdHeader←'Jarvis-SessionID'
⍝ Name of the header field or cookie for the session token

SessionUseCookie←0
⍝ 0 - use the header; 1 - use an HTTP cookie

SessionPollingTime←1
⍝ how frequently (in minutes) we should poll for timed out sessions

SessionTimeout←0
⍝ 0 = do not use sessions, ¯1 = no timeout , 0< session timeout time (in
minutes)

SessionCleanupTime←60
⍝ how frequently (in minutes) do we clean up timed out session info from
_sessionsInfo

Building Web Services with Jarvis46

In [SA2]/SessionDemo:
jarvisconfig.json:
{ "SessionInitFn" : "InitializeSession",

"SessionTimeout" : .25,
"Port" : 8889,
"SessionUseCookie" : 1 }

∇ InitializeSession req
[1] ⍝ initializes the session
[2] req.Session.Sum←0

∇

∇ r←req Add arg
[1] ⍝ arg is an integer array
[2] req.Session.Sum+←+/arg
[3] r←req.Session.Sum

∇

j←Jarvis.Run '[SA2]/SessionDemo/jarvisconfig.json'

Session Example

Building Web Services with Jarvis47

 Jarvis supports HTTP Basic authentication
 When used through a browser, the familiar credentials dialog will appear.

 Credentials can also be provided in the URL or in an Authorization header.

 NOTE: HTTP Basic authentication encodes but does not encrypt the user
credentials. It should never be used over a unencrypted link.

 You can also "roll your own" by creating a login endpoint and having
the user enter their credentials.
 There are usage patterns that you can employ to securely send credentials over

an unencrypted link, but it's much simpler to use HTTPS.

Authentication/Authorization

Building Web Services with Jarvis48

 Jarvis CORS support. Why might this matter to you?
 If someone wants to call your web service from within a web page

they've developed, CORS enables browsers to accept responses
from your web service.

 CORS is a deeper subject than we have time for in this
workshop, but Jarvis' CORS support will be fully
documented in the forthcoming documentation.

Cross-Origin Resource Sharing (CORS)

Building Web Services with Jarvis49

 Write a web service with 2 endpoints
 One endpoint can be simple (monadic)

 The request payload can be as simple or complicated as you like

 The other endpoint should be dyadic
 The request payload can be as simple or complicated as you like

 In addition to the response payload that's calculated from the request
payload, include something about the request itself in the response

 If you're really brave, try adding hooks

Exercise Time

Building Web Services with Jarvis50

 Users table
 contains user credentials (login and password) for "admins"

 admins can edit Users table and Phonebook table

 Phonebook table
 contains first name, last name, extension, and password

 "owner" of an extension can edit their extension

Sample Phonebook Application

Building Web Services with Jarvis51

 Users endpoints
 AddUser

 DeleteUser

 UpdateUser

 GetUsers

 GetUserByLogin

 Phonebook endpoints
 AddPhonebookEntry

 DeletePhonebookEntry

 UpdatePhonebookEntry

 GetPhonebookByExtension

 SearchPhonebook

Sample Phonebook Application

Building Web Services with Jarvis52

 All endpoints take a namespace argument
 {"lastName":"Kromberg", "firstName":"Morten", …}

 All endpoints return a namespace containing
 rc – return code, 0 means "no error"

 msg – informational message

 payload – any data returned by the endpoint

Sample Phonebook Application

Building Web Services with Jarvis53

 Three versions of the same application:
 v1 – implements all the basic functionality for every endpoint but

does not validate the request payloads nor implement any
authentication/authorization.

 v2 – implements authentication/authorization

 v3 – implements request payload checking

Sample Phonebook Application

Building Web Services with Jarvis54

 New functionality will be driven by user needs

 Release process will be more formal
 Semantic versioning

 GitHub Releases

 Available as a Tatin package

 Documentation is being written https://dyalog.github.io/Jarvis/

 Training materials, more samples, webcasts are planned.

What lies ahead…

https://dyalog.github.io/Jarvis/

