
Olhão 2022

Building Web Services
with Jarvis
(Workshop SA2)

Brian Becker

Building Web Services with Jarvis1

 The hotel has allotted one "snack" per attendee at the
breaks. Please respect that.

 Please fill out the Workshop Feedback form:
 Preferably after the workshop

 If you are not comfortable giving the filled out form to me, there
will be someone outside the room after the workshop to collect
them.

 If you want me to fill out the form for you, I will ☺

A Few Administrative Items

Building Web Services with Jarvis2

 A bit about me…
 https://aplwiki.com/wiki/Brian_Becker

 And you?
 Three ~1-hour sections with two 15-minute breaks

 Introduction to Web Services and Jarvis
 Break

 Jarvis Configuration and Web Service Design
 Break

 Sample "Phonebook" App

Introductions and Agenda

Building Web Services with Jarvis3

 Be able to define a simple web service

 Understand most of the "important" Jarvis configuration settings

 Understand what's available in Jarvis to build more complex services

 Get your feedback

 Not an objective: teach you in depth Jarvis or HTTP

Objectives for this Workshop

Building Web Services with Jarvis4

 Ask questions!

 But please be mindful of time and the specificity of the question.

 Offer suggestions

 Features you'd like to see or think Jarvis should have

 Techniques – is there a better way to do something?

 Internally, Jarvis uses(⎕IO ⎕ML)←1 and today's exercises will as well

 Your application code can use whatever best suits you

 We will be starting a lot of instances of Jarvis today. Best practice is to close
the instance before opening another to avoid "port in use" conflicts.

Miscellaneous Stuff…

Building Web Services with Jarvis5

 How many of you have:
 Used a web service either directly or indirectly?

 Written a web service?

 Used Jarvis?

 Understand HTTP – cookies, headers, methods, etc?

Quick Survey

Building Web Services with Jarvis6

When you see [SA2] in text and examples, it refers to
the folder where you installed the SA2 workshop
materials.

✓ SA2 materials downloaded?

✓ Jarvis downloaded?

✓ Local port available?

On Your Mark…

Building Web Services with Jarvis7

⍝ Start Dyalog APL

)clear

sum←{+/⍵}

rotate←⌽

]load [SA2]/Jarvis

Get Set…

Building Web Services with Jarvis8

⍝ you can specify a port other than 8080 if necessary

j←1⊃Jarvis.Run 8080 #

]open http://localhost:8080

]load HttpCommand

(HttpCommand.GetJSON 'post' 'localhost:8080/sum' (⍳5)).Data

Go!

http://localhost:8080/

Building Web Services with Jarvis9

 We defined and started a web service

 Defined "endpoints" for the service

 Started the service

 Used a browser to open a page that contained a JavaScript client to
communicate with the service

 Used HttpCommand as a client

What did we just do?

Building Web Services with Jarvis10

 Web Service

 Uses HTTP

 Machine-to-machine

 Variety of clients

 Python, C#, APL, JavaScript

 Specific API

 Web Server

 Uses HTTP

 Human interface

 Client is typically a browser
using HTML/CSS/JavaScript

Web Service or Web Server

Building Web Services with Jarvis11

 JSON and REST Service

 Supports two "paradigms" - JSON and REST

 A service can run only one paradigm

 Jarvis' ancestry
 Originally written as JSONServer in December 2017 for a client over a

weekend

 Core HTTP server has been in use for many years

 REST capability was added at a client's request and renamed Jarvis

Introducing Jarvis

Building Web Services with Jarvis12

 Assume as little as possible about how the user will use it

 Be flexible - gives the user the flexibility to use Jarvis as he deems best, not how I dictate.

 CodeLocation can be a ref, a name of a ref, or a folder specification

 Configuration parameters can be specified in a configuration file, a namespace passed to the constructor,
or set individually.

 Provide sensible default behavior to hide some of the nuances of HTTP and web services, but
also provide low-level access for the users who need it.

 Use "hooks" for the user to inject code into the flow at obvious points.

 Startup, at the start of each request, session initialization, authentication, …

 If you feel the need to modify the Jarvis code itself – we probably need to add another hook.

 Need-driven design – if you need it, we'll try to put it in

 CORS support and the REST paradigm are two examples

Jarvis Design Philosophy

Building Web Services with Jarvis13

 The HTTP method, URI, and payload
specify what to do.

 Standard HTTP methods for operations

GET – retrieve a resource
POST – create a resource
PUT – replace a resource
PATCH – update a resource
DELETE – delete a resource

 URI Endpoints are "resources"

 Payloads are often JSON or XML

The GitHub REST API is a good example
https://docs.github.com/en/rest/repos/repos

GitHub API (abbreviated) Examples

 Get the commits for a repository
GET /repos/Dyalog/Jarvis/commits

 Create an organization repository
POST /orgs/Dyalog/repos

{"name":"NewRepo"}

 Update a repository
PATCH /repos/Dyalog/Jarvis

{"name":"NewName"}

REST

https://docs.github.com/en/rest/repos/repos

Building Web Services with Jarvis14

GitHub Web Service REST Example
]load HttpCommand

#.HttpCommand

⊢ r ← HttpCommand.Get 'https://api.github.com/orgs/dyalog-training/repos'
[rc: 0 | msg: | HTTP Status: 200 "OK" | ⍴Data: 43023]

100↑r.Data
[{"id":537497880,"node_id":"R_kgDOIAmRGA","name":"2022-SA1","full_name":"dyalog-training/2022-SA1","

⊢ r ← HttpCommand.GetJSON 'get' 'https://api.github.com/orgs/dyalog-training/repos'
[rc: 0 | msg: | HTTP Status: 200 "OK" | ⍴Data: 8]

r.Data.name
2022-SA1 2022-SA2 2022-TP2 2022-SA3 2022-SP1 2022-SP2 2022-TP3 .github

↑r.Data.(name updated_at)
2022-SA1 2022-10-05T08:28:28Z
2022-SA2 2022-10-05T21:24:30Z
2022-TP2 2022-09-21T11:29:37Z
2022-SA3 2022-09-24T06:56:29Z
2022-SP1 2022-09-28T13:04:05Z
2022-SP2 2022-10-06T14:00:03Z
2022-TP3 2022-09-29T18:23:40Z
.github 2022-10-06T13:35:40Z

Building Web Services with Jarvis15

 Write a function for each HTTP method that your service will support
 response ← GET request

request is the request object
response is the response payload

 The function will parse the path and endpoint to identify the resource

GET /customers ⍝ get all customers
GET /customers/10 ⍝ get customer 10 information
GET /customers/10/invoices ⍝ get customer 10's invoices

 There are other principles that help determine a service's "RESTfulness" including:
 Statelessness

 Caching of responses

Jarvis does not address these

REST Paradigm

Building Web Services with Jarvis16

 Endpoints are result-returning monadic or dyadic APL functions
 Right argument is the request payload

 Optional left argument is the request object itself

 All requests use HTTP POST method

 Request and response payloads are JSON
 Jarvis handles all conversion between JSON and APL formats

JSON Paradigm

Building Web Services with Jarvis17

REST
 Good for "database" applications

CRUD – create, read, update, delete

 API requires thought/discipline
For instance, how to implement a query?
get /customers/country/Denmark
get /customers?country=Denmark

 Need to understand HTTP requests

 HTTP Method, Path, Query Parameters,
Headers, Payload, Status Codes

JSON
 Good for functional endpoints

 API is more flexible

 API is easier to implement

 Probably suits the "APL mindset" better

 Understanding HTTP requests is useful
but generally necessary

REST or JSON?

Building Web Services with Jarvis18

To send a request to a Jarvis service running the JSON paradigm, the
client performs the following:

 Specify the host and endpoint

 http://localhost:8080/sum

 Specify the payload/data/body in JSON format

 [2,4,6]

 Specify the content-type as 'application/json'

 Specify the HTTP method as POST

JSON Paradigm

Building Web Services with Jarvis19

POST /sum HTTP/1.1
Host: localhost:8080
User-Agent: Dyalog-HttpCommand/5.1.3
Accept: */*
Content-Type: application/json
Content-Length: 7

[2,4,6]

Headers

Payload

HTTP Method
Host Address

Endpoint

Anatomy of a JSON HTTP Request

Building Web Services with Jarvis20

JavaScript
var xhr = new XMLHttpRequest();
xhr.open("POST", http://localhost:8080/sum);
xhr.setRequestHeader("content-type", "application/json");
xhr.send("[1,2,3,4]");
xhr.response;

PowerShell
$url = http://localhost:8080/sum
$hdrs = @{'content-type' = 'application/json'}
$body = '[1,3,5,7,9,11]'
Invoke-WebRequest –Method Post –URI $url –Headers $hdrs –Body $body

Python

import requests
import json
url = 'http://localhost:22333/sum'
hdrs = {"content-type":"application/json"}
array = [2,4,6,8]
resp = requests.post(url, data=json.dumps(array), headers=hdrs)
print(resp.json())

curl curl -d "[1,2,3,4,5]" -H "content-type:application/json" http://localhost:8080/sum

APL HttpCommand.GetJSON 'post' 'localhost:8080/sum' (⍳5)

Client Examples

http://localhost:8080/sum
http://localhost:8080/sum

Building Web Services with Jarvis21

 Stateful or Stateless?
 Does your service need to maintain "state" between requests?
 If so, where to maintain that state? On the client or in the server?

 Security?
 HTTPS
 Authentication/Authorization

 Scalability?
 Come to the Deploying Services workshop ☺

Some Web Service Design Questions

Building Web Services with Jarvis22

 Lightweight, language-neutral, data-interchange format

 https://www.json.org/json-en.html
 Scroll down to Languages section

JSON Briefly

https://www.json.org/json-en.html

Building Web Services with Jarvis23

 JSON is a natural and complementary fit with APL

 ⎕JSON converts between JSON and APL representations

 APL arrays with rank >1 can be split to make vectors of vectors (of vectors…)

JSON and APL

JSON APL

Number 42 42

String "hello" 'hello'

Array [2, "hello"]
[[1,2,3],["hi","there"]]

2 'hello'
(1 2 3)('hi' 'there')

Object {"number": 2,
"greeting":"hello"}

obj←⎕NS ''
obj.(number greeting)←2 'hello'

Building Web Services with Jarvis24

 Can be specified
 in a JarvisConfig JSON file

 in environment variables (must use Jarvis workspace)
or in the constructor argument to the Jarvis class

 directly in the Jarvis instance

Settings take precedence in the order above

We'll refer to the collection of settings as "JarvisConfig"

Jarvis Configuration Settings

Building Web Services with Jarvis25

 Jarvis.dws
 At least one Jarvis config setting must be set as an environment variable

 Jarvis.dyalog
 Create an instance

 Set configuration

 And go!

 dyalog/Jarvis Docker container
 a public container found on DockerHub https://hub.docker.com/dyalog/jarvis

Running Jarvis

https://hub.docker.com/dyalog/jarvis

Building Web Services with Jarvis26

 j←⊃Jarvis.Run args – create and start a Jarvis server

 j←Jarvis.New args – create a Jarvis server

 j.Start – start the Jarvis server

 j.Stop – stop the Jarvis server

 j.Config – show the Jarvis server's configuration

Useful Functions

Building Web Services with Jarvis27

 r←Jarvis.Run args – creates and starts a Jarvis server

 args is one of:

 a character vector containing either the name of a JarvisConfig file or CodeLocation

 a reference to a JarvisConfig namespace

 [1] the port Jarvis is to list on
[2] CodeLocation
[3] (optional) the paradigm to use ('JSON' or 'REST'). Default is 'JSON'
[4] (optional) the name of a JarvisConfig file or reference to a JarvisConfig namespace

 r is
[1] a reference to the Jarvis instance
[2] a return code (0 means "OK" and Jarvis was started, non-zero means error)
[3] a (hopefully useful) message if the return code is non-zero

 If you forget to capture the result of Jarvis.Run, you can use j←⊃⊃⎕INSTANCES Jarvis

 Jarvis.New takes the same arguments as Jarvis.Run but just returns a reference to the instance

Jarvis.Run and Jarvis.New

Building Web Services with Jarvis28

 is where Jarvis looks for your code

 Namespace reference or name: #.myAPI or '#.myAPI'
Jarvis.Run 8080 #

 Folder name: either fully qualified or relative to:

 Workspace if not CLEAR WS

 Folder of JarvisConfig file if it exists

 Jarvis' source folder (assuming you loaded Jarvis from file)

CodeLocation

Building Web Services with Jarvis29

HTML Interface
 Jarvis is not a web server but it can serve static HTML content and has a built-

in, simple, HTML interface.

 This interface was developed for demonstration and testing purposes.

 It is useful for for showing what endpoints are exposed.

 The HTMLInterface configuration setting controls the HTMLInterface:

 0 means disable any HTML interface

 1 (the default) means enable the built-in HTML interface

 The name of a folder or file containing the content for an HTML interface
This is how TryAPL.org works.

Building Web Services with Jarvis30

HTML Interface

Building Web Services with Jarvis31

 By default, all functions in CodeLocation (and below) are exposed as endpoints.

 j←Jarvis.Run 8081 '[SA1]/SampleCodeLocation'
]open https://localhost:8081

 Use IncludeFns and ExcludeFns which are vector(s) of:

 Function names: 'sum' 'rotate'

 Strings with wildcards: 'hidden.*'

 regex: "^[A-Z].*"

 Any combination of the above

IncludeFns is run before ExcludeFns

Exposing and Hiding Endpoints

https://localhost:8081/

Building Web Services with Jarvis32

settings←⎕NS ''
settings.Port←8882
settings.CodeLocation←'[SA2]/SampleCodeLocation'
settings.ExcludeFns←'hidden.*' 'utils.HideMe'

j←Jarvis.New settings
j.Start
j.Stop

)ed file://[SA2]/SampleCodeLocation/JarvisConfig.json
j←Jarvis.New '[SA2]/SampleCodeLocation/JarvisConfig.json'
j.Start
j.Stop

Tying some of the pieces together…

file://[SA2]/SampleCodeLocation/JarvisConfig.json

Building Web Services with Jarvis33

Up to now we've used simple monadic functions as our endpoints.

 If you have a dyadic (or ambivalent) function, a reference to the HTTP
Request object is passed as the left argument.

 This provides access to metadata for the request that can be used to
further validate the request.

 It also makes it easier for us to "be a good citizen" and conform to some
common practices for web services.

Ready for the next level?

Building Web Services with Jarvis34

 An instance is created for each HTTP request received by Jarvis.

 The two main uses for the request are:
 querying request parameters sent by the client

 headers, cookies, peer certificate, among others

 managing response content to be send back by Jarvis

 HTTP status code and message, and the payload

 Simple web services may never need to use Request

Request Object

Building Web Services with Jarvis35

 {status}←{message} Fail HTTPStatus
{status}←{message} SetStatus HTTPStatus
Sets the HTTP response status code and status message
If message is not supplied, use the standard message (if there is one) for the code

 value←GetCookie name
Return the value of the cookie named name or '' if no cookie with that name exists.

 value←GetHeader name
Return the value of the HTTP header named name or '' if no header with that name exists.

 name SetCookie cookie
Set a response cookie. cookie is the cookie value with optional additional cookie settings
appended and separated by ';'

 name SetHeader header
Set a response header

Useful Request Functions

Building Web Services with Jarvis36

 Response – reference to a namespace containing Status,
StatusText, and Payload

 Server – reference to the Jarvis server instance

 Session – reference to the session namespace, if using sessions

 EndPoint – the endpoint for the request

 Password – if using HTTP Basic authentication, the supplied password

 UserID – if using HTTP Basic authentication, the supplied user ID.

Some Request Object Fields

Building Web Services with Jarvis37

 HTTP statuses reflect the success or
failure of the server to satisfy the request

 Jarvis will set appropriate HTTP status
codes for conditions it detects.

 Success

 Endpoint not found

 Unauthorized request

 You can use req.SetStatus inside your
endpoints to set appropriate statuses.

 2xx – success
200 - Success
201 - Created
204 - No content

 4xx – Client Error
400 - Bad Request
401 - Unauthorized
403 - Forbidden
404 - Not found
405 - Method not allowed

 5xx – Server Error
500 - Internal server error

HTTP Response Statuses

Building Web Services with Jarvis38

 Jarvis has several "hooks" where you can inject your code.
You set a hook by assigning the name of your function that implements the
hook to one of the following:
AppInitFn – called when Jarvis starts
AppCloseFn – called when Jarvis stops
SessionInitFn – called when a new session is created (sessioning must be enabled)
AuthenticateFn – called on every request
ValidateRequestFn – called when the request is received but before Jarvis starts processing
the request

 All of the hooks take a Request object as their right argument and return 0
if there is no error.

 If you do not specify a hook, Jarvis uses {0} as its definition.

Hooks

Building Web Services with Jarvis39

 We know that our application code won't fail.

 And we're confident that Jarvis itself is without flaw.

 And users always send us the data we're expecting.

 But just in case that smallest of possibilities happens and
things don't behave as we expect…

 Here are some tips to help you debug a Jarvis web service…

Debugging

Building Web Services with Jarvis40

 Jarvis.Debug←0
No debugging, Jarvis traps all errors and reports them as 500

 Jarvis.Debug←1
Jarvis suspends on any error

 Jarvis.Debug←2
Jarvis suspends just prior to calling user endpoints or hooks

 Jarvis.Debug←4
Jarvis suspends just after receiving the client request

 Values are additive: 5 = 1+4

Debugging

Building Web Services with Jarvis41

 When you have a reproducible error, but don't try to reproduce it from a client
running in the same APL process as Jarvis. In other words, don't use HttpCommand
to produce the error from the same session that Jarvis is running in.

 Then, in the Jarvis process, set Jarvis.Debug←1.

 Switch to the client process and issue the request that causes the error.

 Switch back to the Jarvis process (it should be suspended) and do your normal
debugging.

 Set Jarvis.Debug←0 and try to reproduce the error from the client

 To debug your endpoint or hook code, Jarvis.Debug←2 and use the debugger to
step through your code.

Debugging

Building Web Services with Jarvis42

 Check the configuration using j.Config

 Use the built-in HTML interface to query and test
endpoints. j.HTMLInterface←1

 If you need to change Jarvis settings, it's safest to stop the
server, make the changes, and start the server again.

Other Debugging Aids/Hints

Building Web Services with Jarvis43

 Client side
 All necessary state is "bundled" by the client in the request,

updated and bundled in the response by the server endpoint.

 This is how TryAPL.org works.

 Good for distributed/load balanced applications – it doesn't matter
which server instance handles the request

Maintaining State between Requests

Building Web Services with Jarvis44

 Server side
 When a session starts, Jarvis creates

 a session namespace

 a session ID that is either sent as a cookie or a header

 the cookie or header must be sent with every subsequent request to
maintain session continuity. Cookies are preferred as they are sent
automatically by many clients.

 In a distributed/load balanced applications – you may need to make
the request "sticky" so subsequent requests are handled by the same
server

Maintaining State between Requests

Building Web Services with Jarvis45

Session Configuration Settings
SessionIdHeader←'Jarvis-SessionID'
⍝ Name of the header field or cookie for the session token

SessionUseCookie←0
⍝ 0 - use the header; 1 - use an HTTP cookie

SessionPollingTime←1
⍝ how frequently (in minutes) we should poll for timed out sessions

SessionTimeout←0
⍝ 0 = do not use sessions, ¯1 = no timeout , 0< session timeout time (in
minutes)

SessionCleanupTime←60
⍝ how frequently (in minutes) do we clean up timed out session info from
_sessionsInfo

Building Web Services with Jarvis46

In [SA2]/SessionDemo:
jarvisconfig.json:
{ "SessionInitFn" : "InitializeSession",

"SessionTimeout" : .25,
"Port" : 8889,
"SessionUseCookie" : 1 }

∇ InitializeSession req
[1] ⍝ initializes the session
[2] req.Session.Sum←0

∇

∇ r←req Add arg
[1] ⍝ arg is an integer array
[2] req.Session.Sum+←+/arg
[3] r←req.Session.Sum

∇

j←Jarvis.Run '[SA2]/SessionDemo/jarvisconfig.json'

Session Example

Building Web Services with Jarvis47

 Jarvis supports HTTP Basic authentication
 When used through a browser, the familiar credentials dialog will appear.

 Credentials can also be provided in the URL or in an Authorization header.

 NOTE: HTTP Basic authentication encodes but does not encrypt the user
credentials. It should never be used over a unencrypted link.

 You can also "roll your own" by creating a login endpoint and having
the user enter their credentials.
 There are usage patterns that you can employ to securely send credentials over

an unencrypted link, but it's much simpler to use HTTPS.

Authentication/Authorization

Building Web Services with Jarvis48

 Jarvis CORS support. Why might this matter to you?
 If someone wants to call your web service from within a web page

they've developed, CORS enables browsers to accept responses
from your web service.

 CORS is a deeper subject than we have time for in this
workshop, but Jarvis' CORS support will be fully
documented in the forthcoming documentation.

Cross-Origin Resource Sharing (CORS)

Building Web Services with Jarvis49

 Write a web service with 2 endpoints
 One endpoint can be simple (monadic)

 The request payload can be as simple or complicated as you like

 The other endpoint should be dyadic
 The request payload can be as simple or complicated as you like

 In addition to the response payload that's calculated from the request
payload, include something about the request itself in the response

 If you're really brave, try adding hooks

Exercise Time

Building Web Services with Jarvis50

 Users table
 contains user credentials (login and password) for "admins"

 admins can edit Users table and Phonebook table

 Phonebook table
 contains first name, last name, extension, and password

 "owner" of an extension can edit their extension

Sample Phonebook Application

Building Web Services with Jarvis51

 Users endpoints
 AddUser

 DeleteUser

 UpdateUser

 GetUsers

 GetUserByLogin

 Phonebook endpoints
 AddPhonebookEntry

 DeletePhonebookEntry

 UpdatePhonebookEntry

 GetPhonebookByExtension

 SearchPhonebook

Sample Phonebook Application

Building Web Services with Jarvis52

 All endpoints take a namespace argument
 {"lastName":"Kromberg", "firstName":"Morten", …}

 All endpoints return a namespace containing
 rc – return code, 0 means "no error"

 msg – informational message

 payload – any data returned by the endpoint

Sample Phonebook Application

Building Web Services with Jarvis53

 Three versions of the same application:
 v1 – implements all the basic functionality for every endpoint but

does not validate the request payloads nor implement any
authentication/authorization.

 v2 – implements authentication/authorization

 v3 – implements request payload checking

Sample Phonebook Application

Building Web Services with Jarvis54

 New functionality will be driven by user needs

 Release process will be more formal
 Semantic versioning

 GitHub Releases

 Available as a Tatin package

 Documentation is being written https://dyalog.github.io/Jarvis/

 Training materials, more samples, webcasts are planned.

What lies ahead…

https://dyalog.github.io/Jarvis/

