JDYALOC

Olh&o 2022

Building Web Services
with Jarvis

(Workshop SA2)

Brian Becker

A Few Administrative Items

The hotel has allotted one "snack" per attendee at the
breaks. Please respect that.

Please fill out the Workshop Feedback form:

Preferably after the workshop

If you are not comfortable giving the filled out form to me, there
will be someone outside the room after the workshop to collect

them.
If you want me to fill out the form for you, | will ©

Building Web Services with Jarvis

Introductions and Agenda

A bit about me...
https://aplwiki.com/wiki/Brian Becker

And you?
Three ~1-hour sections with two 15-minute breaks

Introduction to Web Services and Jarvis
Break

Jarvis Configuration and Web Service Design
Break

Sample "Phonebook" App

Building Web Services with Jarvis

Objectives for this Workshop

Be able to define a simple web service

Understand most of the "important” Jarvis configuration settings
Understand what's available in Jarvis to build more complex services
Get your feedback

Not an objective: teach you in depth Jarvis or HTTP

Building Web Services with Jarvis

Miscellaneous Stuff...

Ask questions!
But please be mindful of time and the specificity of the question.
Offer suggestions
Features you'd like to see or think Jarvis should have
Techniques — is there a better way to do something?
Internally, Jarvis uses (0I0 [OML)<«1 and today's exercises will as well
Your application code can use whatever best suits you

We will be starting a lot of instances of Jarvis today. Best practice is to close
the instance before opening another to avoid "port in use" conflicts.

Building Web Services with Jarvis

Quick Survey

How many of you have:
Used a web service either directly or indirectly?
Written a web service?
Used Jarvis?

Understand HTTP - cookies, headers, methods, etc?

Building Web Services with Jarvis

On Your Mark...

When you see [SA2] in text and examples, it refers to
the folder where you installed the SA2 workshop

materials.

SA2 materials downloaded?
Jarvis downloaded?

Local port available?

Building Web Services with Jarvis

Get Set...

A Start Dyalog APL
)clear
sum«{+/w}
rotate<¢

Jload [SA2]/Jarvis

Building Web Services with Jarvis

Gol

A you can specify a port other than 8080 if necessary

j«1>Jarvis.Run 8080 #

lopen http://localhost:8080

]load HttpCommand

(HttpCommand.GetJSON 'post' 'localhost:8080/sum' (15)).Data

Building Web Services with Jarvis

http://localhost:8080/

What did we just do?

We defined and started a web service
Defined "endpoints” for the service

Started the service

Used a browser to open a page that contained a JavaScript client to
communicate with the service

Used HttpCommand as a client

Building Web Services with Jarvis

Web Service or Web Server

Web Service
Uses HTTP

Web Server

Machine-to-machine

Variety of clients

Python, C#, APL, JavaScript

Specific API

Uses HTTP
Human interface

Client is typically a browser
using HTML/CSS/JavaScript

10

Building Web Services with Jarvis

Introducing Jarvis

JSON and REST Service
Supports two "paradigms" - JSON and REST
A service can run only one paradigm

Jarvis' ancestry

Originally written as JSONServer in December 2017 for a client over a
weekend

Core HTTP server has been in use for many years

REST capability was added at a client's request and renamed Jarvis

11

Building Web Services with Jarvis

Jarvis Design Philosophy

Assume as little as possible about how the user will use it

Be flexible - gives the user the flexibility to use Jarvis as he deems best, not how | dictate.
CodelLocation can be aref, aname of a ref, or a folder specification

Configuration parameters can be specified in a configuration file, a namespace passed to the constructor,
or set individually.

Provide sensible default behavior to hide some of the nuances of HTTP and web services, but
also provide low-level access for the users who need it.

Use "hooks" for the user to inject code into the flow at obvious points.
Startup, at the start of each request, session initialization, authentication, ...
If you feel the need to modify the Jarvis code itself — we probably need to add another hook.

Need-driven design - if you need it, we'll try to put it in

CORS support and the REST paradigm are two examples

12 Building Web Services with Jarvis

REST

The HTTP method, URI, and payload
specify what to do.

Standard HTTP methods for operations

GET - retrieve a resource
POST - create a resource
PUT - replace a resource
PATCH - update a resource
DELETE - delete a resource

URI Endpoints are "resources"”

Payloads are often JSON or XML

The GitHub REST APl is a good example
https://docs.github.com/en/rest/repos/repos

GitHub API (abbreviated) Examples

Get the commits for a repository
GET /repos/Dyalog/Jarvis/commits

Create an organization repository
POST /orgs/Dyalog/repos
{"name" : "NewRepo"}

Update a repository
PATCH /repos/Dyalog/Jarvis
{"name": "NewName" }

13

Building Web Services with Jarvis

https://docs.github.com/en/rest/repos/repos

GitHub Web Service REST Example

Jload HttpCommand
#.HttpCommand

+ r « HttpCommand.Get 'https://api.github.com/orgs/dyalog-training/repos'
[rc: 0 | msg: | HTTP Status: 200 "OK" | pData: 43023]

100tr.Data
[{"id":537497880,"node_id":"R_kgDOIAmMRGA", "name":"2022-SA1","full_name":"dyalog-training/2022-SA1","

+ r « HttpCommand.GetJSON 'get' 'https://api.github.com/orgs/dyalog-training/repos'
[rc: O | msg: | HTTP Status: 200 "OK" | pData: 8]

r.Data.name
2022-SA1 2022-SA2 2022-TP2 2022-SA3 2022-SP1 2022-SP2 2022-TP3 .github

tr.Data.(name updated_at)
2022-SA1 2022-10-05T08:28:28Z
2022-SA2 2022-10-05T21:24:30Z
2022-TP2 2022-09-21T11:29:371Z
2022-SA3 2022-09-24T06:56:292Z
2022-SP1 2022-09-28T13:04:052Z
2022-SP2 2022-10-06T14:00:03Z
2022-TP3 2022-09-29T18:23:40Z
.github 2022-10-06T13:35:402Z

e

>

O/

&)

14 Building Web Services with Jarvis

REST Paradigm

Write a function for each HTTP method that your service will support
response « GET request
request isthe request object
response is the response payload

The function will parse the path and endpoint to identify the resource

GET /customers A get all customers
GET /customers/10 A get customer 10 information
GET /customers/10/invoices A get customer 10's invoices

There are other principles that help determine a service's "RESTfulness" including:
Statelessness
Caching of responses

Jarvis does not address these

15

Building Web Services with Jarvis

JSON Paradigm

Endpoints are result-returning monadic or dyadic APL functions
Right argument is the request payload

Optional left argument is the request object itself
All requests use HTTP POST method

Request and response payloads are JSON

Jarvis handles all conversion between JSON and APL formats

16

Building Web Services with Jarvis

REST or JSON?

REST JSON

Good for "database" applications Good for functional endpoints
CRUD - create, read, update, delete

APl is more flexible
API requires thought/discipline

For instance, how to implement a query? APl is easier to implement

get /customers/country/Denmark

get /customers?country=Denmark Probably suits the "APL mindset" better

Need to understand HTTP requests Understanding HTTP requests is useful
HTTP Method, Path, Query Parameters, but generally necessary

Headers, Payload, Status Codes

17

Building Web Services with Jarvis

JSON Paradigm

To send a request to a Jarvis service running the JSON paradigm, the
client performs the following:

¢ Specify the - and endpoint
~ http://localhost:8080/sum
¢ Specify the payload/data/body in JSON format
o [2,4,6]
¢ Specify the content-type as 'application/json’
¢ Specify the HTTP method as POST

18

Building Web Services with Jarvis

Anatomy of a JSON HTTP Request

HTTP Method / Endpoint

Headers

Payload

Host Address

POST /sum HTTP/1.1 /

Host: |[localhost:8080

User-Agent: Dyalog-HttpCommand/5.1.3
Accept: */x

Content-Type: application/json
Content-Length: 7

[2,4,6]

19

Building Web Services with Jarvis

Client Examples

JavaScript

PowerShell

Python

curl

APL

var xhr = new XMLHttpRequest();

xhr.open("POST", http://localhost:8080/sum);
xhr.setRequestHeader("content-type", "application/json");
xhr.send("[1,2,3,4]");

xhr.response;

$url = http://localhost:8080/sum

$hdrs = @{'content-type' = 'application/json'}

$body = '[1,3,5,7,9,11]"

Invoke-WebRequest -Method Post -URI $url -Headers $hdrs -Body $body

import requests

import json

url = 'http://localhost:22333/sum’

hdrs = {"content-type":"application/json"}

array = [2,4,6,8]

resp = requests.post(url, data=json.dumps(array), headers=hdrs)
print(resp.json())

curl -d "[1,2,3,4,5]" -H "content-type:application/json™ http://localhost:8080/sum

HttpCommand.GetJSON 'post' 'localhost:8080/sum' (15)

N0
RA

RGNS

>

20

Building Web Services with Jarvis

http://localhost:8080/sum
http://localhost:8080/sum

Some Web Service Design Questions

Stateful or Stateless?

Does your service need to maintain "state" between requests?

If so, where to maintain that state? On the client or in the server?
Security?

HTTPS

Authentication/Authorization
Scalability?

Come to the Deploying Services workshop ©

21

Building Web Services with Jarvis

JSON Briefly

Lightweight, language-neutral, data-interchange format

https://www.json.org/json-en.html

Scroll down to Languages section

22

Building Web Services with Jarvis

https://www.json.org/json-en.html

JSON and APL

JSON is a natural and complementary fit with APL
[J SON converts between JSON and APL representations

APL arrays with rank >1 can be split to make vectors of vectors (of vectors...)

JSON APL

Number 42 42

String "hello" ‘hel lo’

Array [2, "hello" 1] 2 'hello’
[[1,2,3],["hi","there"]] | (1 2 3)('hi" 'there')

Object {"number": 2, obj<«[NS "'
"greeting":"hello"} obj.(number greeting)«2 'hello’

Building Web Services with Jarvis

Jarvis Configuration Settings

Can be specified
in a JarvisConfig JSON file

in environment variables (must use Jarvis workspace)
or in the constructor argument to the Jarvis class

directly in the Jarvis instance
Settings take precedence in the order above

We'll refer to the collection of settings as "JarvisConfig"

24 Building Web Services with Jarvis

Running Jarvis

Jarvis.dws

At least one Jarvis config setting must be set as an environment variable
Jarvis.dyalog

Create an instance

Set configuration

And go!
dyalog/Jarvis Docker container

a public container found on DockerHub https://hub.docker.com/dyalog/jarvis

25

Building Web Services with Jarvis

https://hub.docker.com/dyalog/jarvis

Useful Functions

je«a>Jarvis.Run args — create and start a Jarvis server
j«Jarvis.New args — create a Jarvis server

j.Start — start the Jarvis server

j.Stop - stop the Jarvis server

j.Config - show the Jarvis server's configuration

26

Building Web Services with Jarvis

Jarvis.Runand Jarvis.New

r<Jarvis.Run args - creates and starts a Jarvis server
args is one of:
a character vector containing either the name of a JarvisConfig file or CodeLocation
a reference to a JarvisConfig namespace

[1] the port Jarvis is to list on

[2] CodeLocation

[3] (optional) the paradigm to use ('JSON' or 'REST'). Default is 'JSON'

[4] (optional) the name of a JarvisConfig file or reference to a JarvisConfig namespace

ris
[1] a reference to the Jarvis instance

[2] a return code (0 means "OK" and Jarvis was started, non-zero means error)
[3] a (hopefully useful) message if the return code is non-zero

If you forget to capture the result of Jarvis.Run, youcan use j«>>5[JINSTANCES Jarvis

Jarvis.New takes the same arguments as Jarvis.Run but just returns a reference to the instance

27

Building Web Services with Jarvis

CodelLocation

is where Jarvis looks for your code

Namespace reference or name: #.myAPI or '#.myAPI'
Jarvis.Run 8080 #

Folder name: either fully qualified or relative to:
Workspace if not CLEAR WS
Folder of JarvisConfig file if it exists

Jarvis' source folder (assuming you loaded Jarvis from file)

28 Building Web Services with Jarvis

HTML Interface

Jarvis is not a web server but it can serve static HTML content and has a built-
in, simple, HTML interface.

This interface was developed for demonstration and testing purposes.
It is useful for for showing what endpoints are exposed.
The HTMLInterface configuration setting controls the HTMLInterface:
0 means disable any HTML interface
1 (the default) means enable the built-in HTML interface

The name of a folder or file containing the content for an HTML interface
This is how TryAPL.org works.

29 Building Web Services with Jarvis

HTML Interface

Jarvis b +

C @ O & 100819

Request

Endpoint: |Hello v |
JSON Payload:

‘Send

Response

30

Building Web Services with Jarvis

Exposing and Hiding Endpoints

By default, all functions in CodeLocat ion (and below) are exposed as endpoints.

j«Jarvis.Run 8081 '[SA1]/SampleCodelLocation'’
Jopen https://localhost:8081

Use IncludeFns and Exc ludeFns which are vector(s) of:

Function names: 'sum' 'rotate'
Strings with wildcards: 'hidden.x'
regex: "A[A-2].x"

Any combination of the above

IncludeFns isrunbefore ExcludeFns

31 Building Web Services with Jarvis

https://localhost:8081/

Tying some of the pieces together...

settings<[NS "'

settings.Port«8882
settings.CodeLocation«'[SA2]/SampleCodelLocation'
settings.ExcludeFns«'hidden.*x"' 'utils.HideMe'

j«Jarvis.New settings
j.Start
j.Stop

Jed file://[SA2]/SampleCodelLocation/JarvisConfig.json
j«Jarvis.New '[SA2]/SampleCodelLocation/JarvisConfig.json'
j.Start

j.Stop

32

Building Web Services with Jarvis

file://[SA2]/SampleCodeLocation/JarvisConfig.json

Ready for the next level?

Up to now we've used simple monadic functions as our endpoints.

If you have a dyadic (or ambivalent) function, a reference to the HTTP
Request object is passed as the left argument.

This provides access to metadata for the request that can be used to
further validate the request.

It also makes it easier for us to "be a good citizen" and conform to some
common practices for web services.

33

Building Web Services with Jarvis

Request Object

An instance is created for each HTTP request received by Jarvis.

The two main uses for the request are:
querying request parameters sent by the client
headers, cookies, peer certificate, among others
managing response content to be send back by Jarvis

HTTP status code and message, and the payload

Simple web services may never need to use Request

34 Building Web Services with Jarvis

Useful Request Functions

{status}«{message} Fail HTTPStatus

{status}<«{message} SetStatus HTTPStatus

Sets the HTTP response status code and status message

If message is not supplied, use the standard message ?if there is one) for the code

value«GetCookie name
Return the value of the cookie named name or " if no cookie with that name exists.

value«<GetHeader name
Return the value of the HTTP header named name or " if no header with that name exists.

name SetCookie cookie

Set a response cookie. cookie is the cookie value with optional additional cookie settings
appended and separated by ;'

name SetHeader header
Set a response header

35

Building Web Services with Jarvis

Some Request Object Fields

Response - reference to a namespace containing Status,
StatusText,and Payload

Server —reference to the Jarvis server instance

Session —reference to the session namespace, if using sessions
EndPoint — the endpoint for the request

Password - if using HTTP Basic authentication, the supplied password

UserID - if using HTTP Basic authentication, the supplied user ID.

36

Building Web Services with Jarvis

HTTP Response Statuses

HTTP statuses reflect the success or
failure of the server to satisfy the request

Jarvis will set appropriate HTTP status
codes for conditions it detects.

Success
Endpoint not found

Unauthorized request

Youcanuse req.SetStatus inside your
endpoints to set appropriate statuses.

2XX — success

200 - Success
201 - Created
204 - No content

Axx — Client Error

400 - Bad Request

401 - Unauthorized

403 - Forbidden

404 - Not found

405 - Method not allowed

5xx — Server Error

500 - Internal server error §

37

Building Web Services with Jarvis

Hooks

Jarvis has several "hooks" where you can inject your code.
You set a hook by assigning the name of your function that implements the
hook to one of the following:

AppInitFn - called when Jarvis starts

AppCloseFn — called when Jarvis stops

SessionInitFn - called when a new session is created (sessioning must be enabled)
AuthenticateFn - called on every request

ValidateRequestFn - called when the request is received but before Jarvis starts processing
the request

All of the hooks take a Request object as their right argument and return O
if there is no error.

If you do not specify a hook, Jarvis uses {0} as its definition.

38 Building Web Services with Jarvis

Debugging

We know that our application code won't fail.
And we're confident that Jarvis itself is without flaw.
And users always send us the data we're expecting.

But just in case that smallest of possibilities happens and
things don't behave as we expect...

Here are some tips to help you debug a Jarvis web service "
\©

39

Building Web Services with Jarvis

Debugging

Jarvis.Debug<«0
No debugging, Jarvis traps all errors and reports them as 500

Jarvis.Debug<1l
Jarvis suspends on any error

Jarvis.Debug<«2
Jarvis suspends just prior to calling user endpoints or hooks

Jarvis.Debug<h

Jarvis suspends just after receiving the client request

Values are additive: 5 = 1+4

40

Building Web Services with Jarvis

Debugging

When you have a reproducible error, but don't try to reproduce it from a client
running in the same APL process as Jarvis. In other words, don't use Ht t pCommand
to produce the error from the same session that Jarvis is running in.

Then, in the Jarvis process, set Jarvis.Debug«l.
Switch to the client process and issue the request that causes the error.

Switch back to the Jarvis process (it should be suspended) and do your normal
debugging.

Set Jarvis.Debug<«0 and try to reproduce the error from the client

To debug your endpoint or hook code, Jarvis.Debug<+2 and use the debugger to
step through your code.

411

Building Web Services with Jarvis

Other Debugging Aids/Hints

Check the configuration using j.Config

Use the built-in HTML interface to query and test
endpoints. j.HTMLInterface<«l1

If you need to change Jarvis settings, it's safest to stop the
server, make the changes, and start the server again.

42

Building Web Services with Jarvis

Maintaining State between Requests

Client side

All necessary state is "bundled" by the client in the request,
updated and bundled in the response by the server endpoint.

This is how TryAPL.org works.

Good for distributed/load balanced applications — it doesn't matter
which server instance handles the request

43

Building Web Services with Jarvis

Maintaining State between Requests

Server side

When a session starts, Jarvis creates
a session namespace
a session ID that is either sent as a cookie or a header

the cookie or header must be sent with every subsequent request to
maintain session continuity. Cookies are preferred as they are sent
automatically by many clients.

In a distributed/load balanced applications — you may need to make
the request "sticky" so subsequent requests are handled by the same
server

$
N
N

44 Building Web Services with Jarvis

Session Configuration Settings

SessionIdHeader<«'Jarvis-SessionID'
A Name of the header field or cookie for the session token

SessionUseCookie<«0
A 0O - use the header; 1 - use an HTTP cookie

SessionPollingTime<«1
A how frequently (in minutes) we should poll for timed out sessions

SessionTimeout<«0
A 0 = do not use sessions, ~1 = no timeout , 0< session timeout time (in
minutes)

SessionCleanupTime<«60
A how frequently (in minutes) do we clean up timed out session info from
_sessionsInfo

45

Building Web Services with Jarvis

Session Example

In [SA2]/SessionDemo:

jarvisconfig.json:

"SessionInitFn" : "InitializeSession",
"SessionTimeout" : .25,

"Port" : 8889,

"SessionUseCookie" : 1 }

V InitializeSession req

[1] @A initializes the session
[2] req.Session.Sum<0

\'4

V r<req Add arg
[1] @A arg is an integer array
[2] reg.Session.Sum+<«+/arg
[3] r<req.Session.Sum

v

j«Jarvis.Run '[SA2]/SessionDemo/jarvisconfig.json'

Building Web Services with Jarvis

Authentication/Authorization

Jarvis supports HTTP Basic authentication
When used through a browser, the familiar credentials dialog will appear.
Credentials can also be provided in the URL or in an Authorization header.

NOTE: HTTP Basic authentication encodes but does not encrypt the user
credentials. It should never be used over a unencrypted link.

You can also "roll your own" by creating a login endpoint and having
the user enter their credentials.

an unencrypted link, but it's much simpler to use HTTPS.

47 Building Web Services with Jarvis

Cross-Origin Resource Sharing (CORS)

Jarvis CORS support. Why might this matter to you?

If someone wants to call your web service from within a web page
they've developed, CORS enables browsers to accept responses
from your web service.

CORS is a deeper subject than we have time for in this
workshop, but Jarvis' CORS support will be fully
documented in the forthcoming documentation.

48 Building Web Services with Jarvis

Exercise Time

Write a web service with 2 endpoints
One endpoint can be simple (monadic)
The request payload can be as simple or complicated as you like
The other endpoint should be dyadic

The request payload can be as simple or complicated as you like

In addition to the response payload that's calculated from the request
payload, include something about the request itself in the response

If you're really brave, try adding hooks

49

Building Web Services with Jarvis

Sample Phonebook Application

Users table
contains user credentials (login and password) for "admins"

admins can edit Users table and Phonebook table

Phonebook table

contains first name, last name, extension, and password

"owner" of an extension can edit their extension

50 Building Web Services with Jarvis

Sample Phonebook Application

Users endpoints Phonebook endpoints
AddUser AddPhonebookEntry
DeleteUser DeletePhonebookEntry
UpdateUser UpdatePhonebookEntry
GetUsers GetPhonebookByExtension

GetUserByLogin

SearchPhonebook

51

Building Web Services with Jarvis

Sample Phonebook Application

All endpoints take a namespace argument

{"lastName":"Kromberg", "firstName":"Morten", ...}

All endpoints return a namespace containing
rc — return code, 0 means "no error"
msg — informational message

payload — any data returned by the endpoint

52 Building Web Services with Jarvis

Sample Phonebook Application

Three versions of the same application:

vl — implements all the basic functionality for every endpoint but
does not validate the request payloads nor implement any
authentication/authorization.

v2 — implements authentication/authorization

v3 — implements request payload checking

53

Building Web Services with Jarvis

What lies ahead...

New functionality will be driven by user needs

Release process will be more formal

Semantic versioning
GitHub Releases

Available as a Tatin package

Documentation is being written https://dyalog.github.io/Jarvis/

Training materials, more samples, webcasts are planned.

54

Building Web Services with Jarvis

https://dyalog.github.io/Jarvis/

