
Olhão 2022

Deploying Services
(SP2)

Brian Becker

Morten Kromberg



Deploying Services1

Give a quick introduction to:

 Jarvis – Dyalog's Web Service Framework – to expose APL functions as services

 Docker: to create lightweight Virtual Machines known as "Containers"

 Docker Compose: to launch and manage multiple inter-connected containers

 Amazon Web Services "Elastic Container Service": to allow Docker Compose to 
launch containers directly to the cloud (so-called "serverless" deployment)

 How to scale the system by running multiple copies of selected services

 How to assign your own domain name and a certificate to your service

Goals



Deploying Services2

 This workshop covers a lot of material with which we expect most of you will be 
somewhat unfamiliar. (we learned a lot ourselves in preparing the material 🙂 )

 Our intent is to show what is possible and roughly how complicated it is.

 Work together through the exercises and don't be afraid to ask questions.

 The workshop materials contain a working system which you can continue to work 
with when you get home.

 We plan to follow up with a series of webcasts that will present the material in more 
"bite-sized" chunks.

 We expect the examples and configuration files will continue to evolve and updates 
will be available on GitHub.

 You are welcome to contact us after Dyalog'22 for some free assistance.

Disclaimer



Deploying Services3

14:00-15:00 Setting the Scene

 Introduction to Jarvis, Docker – and the "Phonebook Service"

 Limbering up: running and calling the Service from APL

 Building and launching a local Docker container

15:15-16:15 Cloud Storage

 Creating a two-tier application in preparation for scaling the system

 Introduction to "docker compose"

 Building, launching and debugging the two-tier solution

16:30-17:30 Scalable Execution on the Cloud

 Installing the Amazon Command Line Interface (CLI)

 Launching the application on "Serverless" Amazon Fargate

 Wrap up: Using your own domain, and adding a certificate (or not)

The Plan



Deploying Services4

The Plan Visualized…



Deploying Services5

The Plan Visualized…

Database

App

In the beginning, there was an Application…



Deploying Services6

Jarvis

Run the app as a service

Database

App



Deploying Services7

Docker Container

Jarvis

Run it in a container

Database

App



Deploying Services8

Split into Front and Back Ends

Database

Write Operations

Read Operations

Front End

Back End

We'll call this "Two-Tier"



Deploying Services9

"The Cloud" (AWS)

Try it in the cloud

Database

Write Operations

Read Operations



Deploying Services10

"The Cloud" (AWS)

Scale it up

Database

Write Operations

Read Operations



Deploying Services11

"The Cloud" (AWS)

Load balance it

Database

Write Operations

Read Operations
Lo

ad
 B

al
an

ce
r



Deploying Services12

"The Cloud" (AWS)

Secure it

Database

Write Operations

Read Operations
Lo

ad
 B

al
an

ce
r



Deploying Services13

 Installed Docker?

 Installed Jarvis?

 Downloaded Workshop Materials?

 Signed up for an AWS account?

 It should cost less than one $/€ to do all the exercises

 Around $20 / month if you leave it running

 Installed & Configured the AWS Command Line Interface?

 How many of you have a domain under your control?

 How many of you are on a non-Windows platform?

 Apologies, all our automation uses .BAT files

 (But real hackers like adapting and running scripts ☺)

Check List – Have You…



Deploying Services14



Deploying Services15

 APL-based web service framework (JSON and REST Service)

 Today we'll be using the JSON paradigm

 Service "endpoints" are result-returning monadic or dyadic APL functions

 All requests are HTTP POST, all payloads are JSON

 Jarvis handles the conversion between JSON to APL and back again

Introducing Jarvis



Deploying Services16

⍝ NOTE: All examples assume (⎕IO ⎕ML)←1

⍝ [SP2] is the folder with the SP2 workshop materials

⍝ Start a Dyalog session
]load [SP2]/Jarvis
sum←⊃+/
reverse←⌽
Server←⊃Jarvis.Run 8083 #    
]open http://localhost:8083

⍝ Hint: Try [1,2,3,4,5] as input data

Exercise 0 
A Web Service in 5 Minutes

http://localhost:8083/


Deploying Services17

 The database
 Two tables – users and phonebook

 Stored in .json files (a real app would likely use a DBMS)

 Users can edit both tables

 Phonebook entry "owners" can edit their own entry

 Anyone can read entries 

The Phonebook Application



Deploying Services18

Jarvis

Run the app as a service

Database

App



Deploying Services19

⍝ [SP2] is the folder with the SP2 workshop materials

⍝ Start a Dyalog session
]load [SP2]/Jarvis
Server←Jarvis.New '[SP2]/single-tier/app/jarvis.json'
Server.Start

⍝ Start another Dyalog
]load [SP2]/single-tier/HttpCommand
HttpCommand.Version ⍝ should be 5.1.5 or later
cmd←HttpCommand.New 'post' 'localhost:8080/GetUsers' '""'
cmd.Show
resp←cmd.Run
resp.Data
resp←HttpCommand.GetJSON 'post' 'localhost:8080/GetUsers' ''
⎕JSON resp.Data.payload
]open http://localhost:8080

Exercise 1 
Test the Phonebook Application



Deploying Services20

Introduction to Docker

From:
http://www.zdnet.com/article/what-is-docker-and-why-is-it-so-darn-popular/

The most widely used
container technology
are "docker" 
containers



Deploying Services21

Efficient and Simple

The really stunning thing is that
Docker Containers have a 

• very simple 

• text based 

• description of the contents of a container

... and they start in seconds 
(at least if they are Linux-based)



Deploying Services22

A "Dockerfile" describes the Container

FROM ubuntu:22.04

ADD ./dyalog-unicode_18.2.nnnnn_amd64.deb /

ADD /myapp/v7/test /myapp

RUN dpkg -i /dyalog*.deb

RUN git clone https://github.com/dyalog/Jarvis /Jarvis

ENV RIDE_INIT="SERVE:*:4502"

ENV CodeLocation=/myapp

CMD dyalog /Jarvis/Distribution/jarvis.dws

Base Image

Files to Add

Run during 
Build

Environment Vars

Run at Startup

This "Dockerfile" completely describes a machine which will run "myapp".

Your
Code



Deploying Services23

Building and Running the Docker Image
FROM ubuntu:22.04

ADD ./dyalog-unicode_18.2.nnnnn_amd64.deb /

ADD /myapp/v7/test /myapp

RUN dpkg -i /dyalog*.deb

RUN git clone https://github.com/dyalog/Jarvis /Jarvis

ENV RIDE_INIT="SERVE:*:4502"

ENV CodeLocation=/myapp

CMD dyalog /Jarvis/Distribution/jarvis.dws

Build

Run

Dockerfile

docker run -p 8081:8080 -v /somefolder:/data –e DEBUG=1 myco/myapp-test

docker build –t myco/myapp-test .



Deploying Services24

docker run      syntax & common switches

Switch Description
-p hhhh:cccc Make TCP port cccc in container visible on 

the host as hhhh
-e name=value Set environment variable inside the container
-v /hfolder:/cfolder Mount /hfolder in container as /cfolder

NB Under Windows, /hfolder must be a full
pathname using Windows conventions (C:\...)

--rm Discard changes when container terminates

docker run -p 8081:8080 -v /somefolder:/data –e DEBUG=1 myco/myapp-test

docker run [OPTIONS] IMAGE [COMMAND] [ARG...]



Deploying Services25

Container Distribution

• DockerHub is to Docker as GitHub is to Git

• A public repository of container images

• Unlimited public images for free

• You can store one free private image

• You can install private servers "in house"

• Today, we will use Amazon Elastic Container Registry 

o ECR is a repository integrated with Amazon Web Services



Deploying Services26

Distributing the Image via DockerHub

Build

Run
docker run -p 8081:8080 -v /somefolder:/data –e DEBUG=1 myco/myapp-test

docker build –t myco/myapp-test .

Push
docker login

docker push myco/myapp-test

We can "push" the image to DockerHub:

Now, the following will work on ANY computer that has Docker installed
(no explicit "docker pull" is required)

You need an 
account



Deploying Services27

Public Dyalog Images
Image Description
dyalog/dyalog Just Dyalog APL
dyalog/jarvis Dyalog APL + Jarvis
dyalog/miserver Dyalog APL + MiServer
dyalog/jupyter Dyalog APL + Jupyter Notebook framework

docker run -p 8081:8080 -v /my/web/service:/app dyalog/jarvis

NB all public images assume/provide you have a basic Dyalog licence.



Deploying Services28



Deploying Services29



Deploying Services30



Deploying Services31



Deploying Services32

Typical Switches settings
when using public Dyalog Images

Switch Description
-p 80:8080 Expose default Jarvis/MiServer port as port 80
-e RIDE_INIT=HTTP:*:8088 Enable "Zero Footprint" RIDE on port 8088
-p 8088:8088 Expose port 8088 to the outside world
-v /my/web/service:/app Mount /my/web/service in container as /app

docker run -p 8081:8080 -v /somefolder:/app dyalog/jarvis:latest



Deploying Services33

FROM ubuntu:22.04
ADD ./dyalog-unicode_18.2.nnnnn_amd64.deb /
RUN dpkg -i /dyalog*.deb
RUN git clone https://github.com/dyalog/Jarvis /Jarvis
ADD /myapp/v7/test /app
CMD dyalog /Jarvis/Distribution/jarvis.dws

Benefits of Public Containers
Without Public Containers

FROM dyalog/jarvis

ADD /myapp/v7/test /app

With Public Containers

docker run –p 8080:8080 –v /myapp/v7/test:/app dyalog/jarvis

Or without building a container at all



Deploying Services34

Warning: Public Containers

 The public containers are for 
experimentation and prototyping

 For production use, you should build
your own container
 Otherwise, the version of the interpreter or 

Jarvis might change under your feet



Deploying Services35

Docker Container

Jarvis

Run it in a container

Database

App



Deploying Services36



Deploying Services37



Deploying Services38

 Start Docker / Docker Desktop
 Build & start docker container
 Make a request
 Debug with RIDE

Hint: See build.bat and start-local.bat
in the single-tier folder

Exercise 2 
Running Phonebook in Docker



Deploying Services39

Putting a stop to things using Docker Desktop



Deploying Services40



Deploying Services41



Deploying Services42



Deploying Services43



Deploying Services44

Split into Front and Back Ends

Database

Write Operations

Read Operations

Front End

Back End

We'll call this "Two-Tier"



Deploying Services45

 Front-End

 Read-only endpoints read directly from database

 Requests for endpoints that write to the database are relayed to the Back-End

 All authentication and validation of payloads is done in the front end

 Back-End

 Endpoints do no authentication or payload validation

 All endpoints return an namespace with

 rc – return code: 0 means "no error"

 msg – informational message if applicable

 payload – response payload, if any

Two-Tier Phonebook



Deploying Services46

∇ resp←req AddUser ns;user;rc;msg;users
[1]    →end⍴⍨0≠(resp←ns utils.checkPayload'"login' '"password').rc
[2]    resp←utils.initializeResponse
[3] 
[4]    :Hold 'database'
[5]        :If 0≠⊃(rc msg users)←dbapi.readUsers
[6]            →end⊣resp.(rc msg)←rc msg
[7]        :EndIf
[8] 
[9]        :If 0≠users.login utils.indexOf⊆,ns.login
[10]            →fail⊣resp.(rc msg)←400('user ',ns.login,' already exists')
[11]       :EndIf
[12]            
[13]       ns.password←utils.hashPassword ns.password
[14]       ns.updatedAt←utils.now
[15]       users,←ns
[16]       →end⍴⍨0≠(resp←dbapi.writeUsers users).rc
[17] 
[18]       resp.(rc msg)←0('user ',ns.login,' added')
[19]   :EndHold
[20]   →0
[21]  end:
[22]   :If 0≠resp.rc ⋄ req.Fail resp.rc ⋄ :EndIf

∇

Single-Tier



Deploying Services47

∇ resp←req AddUser ns;user;rc;msg;users
[1]    →end⍴⍨0≠(resp←ns utils.checkPayload'"login' '"password').rc
[2]    resp←req utils.callBackEnd ns
[3]   end:
[4]    :If 0≠resp.rc ⋄ req.Fail resp.rc ⋄ :EndIf

∇

Front End

Two-Tier



Deploying Services48

∇ resp←req AddUser ns;user;rc;msg;users
[1]    →end⍴⍨0≠(resp←ns utils.checkPayload'"login' '"password').rc
[2]    resp←req utils.callBackEnd ns
[3]   end:
[4]    :If 0≠resp.rc ⋄ req.Fail resp.rc ⋄ :EndIf

∇

∇ resp←req callBackEnd ns;r
[1]   ⍝ sends a call to the backend endpoint
[2]    :Trap 0
[3]        r←HttpCommand.GetJSON'post'('backend:8081',req.Endpoint)ns
[4]        :If r.rc=0
[5]        :AndIf r.HttpStatus=200
[6]            resp←r.Data
[7]            →0
[8]        :EndIf
[9]    :EndTrap
[10]   resp←initializeResponse
[11]   resp.(rc msg)←500('back end call failed')
[12]   req.Fail 500
∇

Front End

Two-Tier



Deploying Services49

∇ resp←req AddUser ns;user;rc;msg;users
[1]    →end⍴⍨0≠(resp←ns utils.checkPayload'"login' '"password').rc
[2]    resp←req utils.callBackEnd ns
[3]   end:
[4]    :If 0≠resp.rc ⋄ req.Fail resp.rc ⋄ :EndIf

∇

∇ resp←req AddUser ns;user;rc;msg;users
[1]    resp←utils.initializeResponse
[2] 
[3]    :Hold 'database'
[4]        :If 0≠⊃(rc msg users)←dbapi.readUsers
[5]            →end⊣resp.(rc msg)←rc msg
[6]        :EndIf
[7] 
[8]        :If 0≠users.login utils.indexOf⊆,ns.login
[9]            →fail⊣resp.(rc msg)←400('user ',ns.login,' already exists')
[10]       :EndIf
[11] 
[12]        ns.password←utils.hashPassword ns.password
[13]        ns.updatedAt←utils.now
[14]        users,←ns
[15]        →end⍴⍨0≠(resp←dbapi.writeUsers users).rc
[16] 
[17]        resp.(rc msg)←0('user ',ns.login,' added')
[18]   :EndHold
[19]   →0
[20]  end:
[21]   :If 0≠resp.rc ⋄ req.Fail resp.rc ⋄ :EndIf

∇

Front End
Back End

Two-Tier



Deploying Services50

Introduction to Docker Compose



Deploying Services51

Collaborating Containers 
with Docker-Compose

• Docker-Compose is a tool for orchestrating 
container images that need to work together.

• It creates a Virtual IP network that connects 
related images together so they can refer to each 
other by name.
o In our case, "frontend" and "backend"

• It also supports replication of images and load 
balancing
o We will wait with that until we deploy to the cloud



Deploying Services52

Shared
Docker Image



Deploying Services53

Shared Data



Deploying Services54

Different
config files



Deploying Services55

Frontend
Exposed on
Port 8080

Backend on port 
8081 visible to 
frontend, but 
not exposed

RIDE exposed on
8088 (front)
8089 (back)



Deploying Services56

Our first "docker compose"

We will issue the command:
docker compose –p phonebook –f docker-compose-local.aws up

-p: Sets the project name. It is important to use this each time so your
commands apply to the same stack. If you forget, it may start or stop the 
wrong stack (default is the current folder name).

-f: selects the docker-compose file (defaults to docker-compose.yml)

DO NOT forget –p and –f each time or you will regret it!



Deploying Services57



Deploying Services58



Deploying Services59

Ctrl-C to stop



Deploying Services60

Split into Front and Back Ends

Database

Write Operations

Read Operations

Front End

Back End

We'll call this "Two-Tier"

Docker Compose
defines the containers
that make up a service



Deploying Services61

 Start docker desktop
 Do a "docker compose up" using

-f docker-compose-local.yml
To select the right docker-compose file

 Make a request
 Debug with RIDE
 Advanced: Check that you can make a request to 

backend:8081 from a RIDE session to the frontend, 
but NOT from the outside (port 8081)

 See what happens if you )OFF from RIDE

Exercise 3 
Local Docker Compose



Deploying Services62

Head for the Clouds



Deploying Services63

"The Cloud" (AWS)

Try it in the cloud

Database

Write Operations

Read Operations



Deploying Services64

AWS Configuration
1) Create AWS user (you should have done this already)

NB: We recommend and have been testing with eu-west-3 (Paris) as the 

default region

2) Create IAM user

3) Download credentials / tokens

4) Install AWS CLI & configure to use tokens

5) Push images to Amazon Container Registry



Deploying Services65



Deploying Services66



Deploying Services67



Deploying Services68



Deploying Services69



Deploying Services70



Deploying Services71



Deploying Services72



Deploying Services73

(these credentials are no longer valid ☺)



Deploying Services74

AWS CLI Setup

We need to:

 Install the Amazon Web Services Command Line Interface

 Configure it to use our new User Credentials



Deploying Services75



Deploying Services76



Deploying Services77



Deploying Services78



Deploying Services79

 Docker Compose can be connected to 
the Amazon Elastic Container Service
 Integration also exists for Microsoft Azure

and perhaps other providers

 We need to create a "docker context"
 When we select the ECS context, 

commands like "docker compose … up"
will use ECS to run our containers

Docker ECS integration



Deploying Services80



Deploying Services81

This folder was
renamed as "two-tier"

Create ECS-based
context

Switch to ECS-based
context



Deploying Services82

 In order to use our container from AWS 
we need to store it either in DockerHub
or the Amazon Elastic Container Registry
 Other registries exist but we have not tested

them

 We will use ECR since we already have a 
user id on AWS

Upload Image



Deploying Services83

This is your user ID



Deploying Services84

(You can edit & run push.bat instead of typing the last command above)

C:\devt\2022-SP2\two-tier>aws ecr get-login-password | docker login --username AWS --password-stdin

352645159704.dkr.ecr.eu-west-3.amazonaws.com

Login Succeeded

C:\devt\2022-SP2\two-tier>docker context use default

C:\devt\2022-SP2\two-tier>docker build –t phonebook .    

C:\devt\2022-SP2\two-tier>docker tag phonebook 352645159704.dkr.ecr.eu-west-3.amazonaws.com/phonebook

C:\devt\2022-SP2\two-tier>docker push 352645159704.dkr.ecr.eu-west-3.amazonaws.com/phonebook

Using default tag: latest

The push refers to repository [352645159704.dkr.ecr.eu-west-3.amazonaws.com/phonebook]

5f70bf18a086: Pushed

56547f2ee3b0: Pushed

…blablabla…

eb0d9da5f23f: Pushed

09ebdb357ed5: Pushed

latest: digest: sha256:8e98fe2b7827ce2f1be123f567ca7be2d62985587228ddb4a390c5dfb02609e5 size: 3236

C:\devt\2022-SP2\two-tier>

Your user ID goes here



Deploying Services85



Deploying Services86



Deploying Services87

 Edit docker-compose-aws.yml
 Edit image names to refer to YOUR image

Ready for take-off?



Deploying Services88

C:> docker context use phonebook

C:> docker compose –p phonebook –f docker-compose-aws.yml up



Deploying Services89

A "CloudFormation Stack" was created…

It contains "Elastic" components that
reproduce the networking and process
management that docker compose was
doing locally

So what just happened??!!



Deploying Services90

Cluster
contains the running tasks          

Frontend Task

Backend Task
visible to frontend but
not exposed to internet

Load Balancer "phonebook"
defines a collection of Listeners
that direct to TargetGroups

FrontEnd8080Listener
directs incoming traffic on port 8080
to the frontend TargetGroup

Plus: CloudMap, DefaultNetwork, LogGroup, Roles, "Ingresses" for each Listener, 
"ServiceDiscoveryEntry" and "TaskExecutionRoles" for each TargetGroup,
"NFSMountTargets" on each subnet in the region

FrontEnd8080TargetGroup
distributes traffic to tasks in the group
(at the moment, only one, but wait…) 



Deploying Services91



Deploying Services92



Deploying Services93

 (screen shots of selected artefacts)

Let's take a look



Deploying Services94



Deploying Services95



Deploying Services96



Deploying Services97



Deploying Services98

Docker compose created

 One "Load Balancer"

 Two "Target Groups"

 One "Cluster"

 Two "Tasks"

 One "Security Group"

So what just happened?

An Elastic (what else) File System was
automatically created due to the volumes: statement
in the .yml file



Deploying Services99

We can see them all here…



Deploying Services100

docker compose … convert >file.yml

… will create the CloudFormation YML for you to view 
(and edit, once you do another week of reading)

docker compose … convert



Deploying Services101



Deploying Services102

 So far, we have been using two YML files
 docker-compose-local.yml

 docker-compose-aws.yml

 It would be easier to maintain a single 
YML file

Tidying up a bit



Deploying Services103

One .YML File → two .BAT files



Deploying Services104



Deploying Services105

 AWS ECS has features that docker-compose 
does not support directly

 We can add "overlays" that will modify the 
CloudFormation before it is uploaded

CloudFormation "Overlays"



Deploying Services106

Make load balancing "sticky":
direct all requests from same
client to the same server
process.

(Uses cookies, allows some
server-side state)

The interpreter does not respond to
"Health Checks" on the RIDE port,
so the backend will be recucled after
(3×30=90) seconds unless we add this

This is not an overlay, but needed because volumes are
created with root as user. This section states that we
will access the file system as if we were user 0 (root).



Deploying Services107

 At the moment, everything is re-created
on each "docker compose … up"

 The DNS address is different each time

 To resolve this, we must use the same 
"Load Balancer" each time

 If we create a load balancer, we can
instruct docker compose to use it…

Using your own Domain Name



Deploying Services108

Creating a
Permanent
Load Balancer



Deploying Services109

"Uncomment" this line



Deploying Services110



Deploying Services111

 The --scale switch instructs docker compose to run a specific
number of copies of a service

 The docker compose command can be repeated to change the 
scale while the system is running

Scaling the Frontend



Deploying Services112

Cluster
contains the running tasks          

Frontend Task 1

Backend Task 1
visible to frontends
not exposed to internet

Load Balancer "phonebook"
defines a collection of Listeners
that direct to TargetGroups

FrontEnd8080Listener
directs incoming traffic on port 8080
to the frontend TargetGroup

Plus: CloudMap, DefaultNetwork, LogGroup, Roles, "Ingresses" for each Listener, 
"ServiceDiscoveryEntry" and "TaskExecutionRoles" for each TargetGroup,
"NFSMountTargets" on each subnet in the region

FrontEnd8080TargetGroup
distributes traffic to tasks in the group
(actual "Load Balancing") Frontend Task 2

two identical processes



Deploying Services113

"The Cloud" (AWS)

Load balance it

Database

Write Operations

Read Operations
Lo

ad
 B

al
an

ce
r



Deploying Services114

 Remember that, thanks to the sticky
session overlay, each client will always
be directed to the same frontend process

Sticky Sessions



Deploying Services115

 So, now our address is the same each time, but
http://phone-loadb-1guewkd0evw2h-887267469.eu-west-3.elb.amazonaws.com
…is a bit of a mouthful

 How about phonebook.myco.com?

 This requires you to register your own domain, and have an ISP that
allows you to do redirection

 Morten is using one.com

Set up Domain Redirection

http://phone-loadb-1guewkd0evw2h-887267469.eu-west-3.elb.amazonaws.com/


Deploying Services116

Define a Redirection

Time To Live tells DNS how long
to cache the value before requesting
a new one. 10 mins is minimum at one.com



Deploying Services117



Deploying Services118

One Final Challenge



Deploying Services119

"The Cloud" (AWS)

Secure it

Database

Write Operations

Read Operations
Lo

ad
 B

al
an

ce
r



Deploying Services120

Steps:

 Get hold of a certificate
 We will get one from the AWS Certificate Manager

 ACM will ask us to add another CNAME redirection and 
test it to verify that we are in control of the domain

 Finally, we must add a listener on port 443 which
redirects to 8080 (the frontend)

Securing the Service



Deploying Services121



Deploying Services122



Deploying Services123



Deploying Services124



Deploying Services125



Deploying Services126



Deploying Services127



Deploying Services128



Deploying Services129



Deploying Services130



Deploying Services131



Deploying Services132



Deploying Services133



Deploying Services134

Secure Service Setup:

 Did not complete automation of startup 
of secure service – manual steps required
 We will figure out how to do it and post 

updates (there will be a pod cast series)

 Note that the manual setup requires
manual teardown

Loose Ends



Deploying Services135

 Did not complete automation of secure
setup.

 Manual setup requires manual teardown

 Not 100% stable

Issues



Deploying Services136

 Did not complete automation of secure
setup.

 Manual setup requires manual teardown

 Not 100% stable

Issues



Deploying Services137

Give a quick introduction to:

 Jarvis – Dyalog's Web Service Framework – to expose APL functions as services

 Docker: to create lightweight Virtual Machines known as "Containers"

 Docker Compose: to launch and manage multiple inter-connected containers

 Amazon Web Services "Elastic Container Service": to allow Docker Compose to 
launch containers directly to the cloud (so-called "serverless" deployment)

 How to scale the system by running multiple copies of selected services

 How to assign your own domain name and a certificate to your service

Goals


