
Olhão 2022

Futures and Isolates
(TP2)

Morten Kromberg

Futures and Isolates1

 Give an overview of Futures and Isolates

 Discuss the implementation and configuration options

 Demonstrate how to troubleshoot and debug
applications which use isolates

 Discuss how to determine whether a given application is
likely to speed up…

 If we have time, experiment with parallelising own code
(did anyone bring something to test)?

Goals

Futures and Isolates2

 Nothing fundamental has changed

 There is no fundamental change in
functionality
 Significant usability enhancements and better

utilities

 It now works quite reliably in all supported
versions of APL
 This was not the case in 2014

NB: Mostly Repeat of Dyalog'14

Futures and Isolates3

Six sessions of 10-minute intro + 20 minutes experimentation

13:30-14:30

 Introduction: What are futures and isolates?

 Errors, Tracking progress, Interrupts

14:45-15:45

 Operator models

 Configuration Options

16:00-17:00

 Debugging & Troubleshooting

 Performance - when and how to use isolates in practice

The Plan

Futures and Isolates4

Materials used can be found in
https://github.com/dyalog-training/2022-TP2

 Unzip the latest release, or

 Copy the folder 2022-TP2 from the USB drive

 Also open a tab on
https://docs.dyalog.com/latest/Parallel%20Language%20Features.pdf

Materials

https://github.com/dyalog-training/2022-TP2
https://docs.dyalog.com/latest/Parallel%20Language%20Features.pdf

Futures and Isolates5

Futures and Isolates6

Futures and Isolates7

 Goal: Allow the APL user to explicitly express
parallelism in a natural way

 In the interpreter, futures and isolates enable
coarse-grained task parallelism

 Tasks with a duration of at least 100ms

 In a compiler, futures can be used to express
fine-grained data parallelism

Futures and Isolates

Futures and Isolates8

 An Isolate tastes, smells, looks like a
Dyalog namespace, except that...

 Expressions executed in the isolate run
in a separate process from the main
interpreter thread (”in parallel”)

Isolates

Futures and Isolates9

Isolates in Action

X←1 2 3

X←4 5

X←6

I3←¤¨3⍴⊂''

I3.({(+⌿⍵)÷≢⍵}X)
I3.X←(1 2 3)(4 5)6

2 4.5 6

Futures and Isolates10

A 2-Core Computer

How it Works…

A Dyalog
Application

Isolate
Process 1

Isolate
Process 2

Isolate 1

Isolate 2

Dyalog Processes Namespaces

1 2 3 4

Computers

Another Computer
isolate.StartServer 'ip=10.0.0'

Isolate
Process 1

Isolate
Process 2 iss←¤¨4⍴⊂⍬

AddServer '10.0.0.4'

CONGA / TCP
Sockets

Isolate 3

Isolate 4

Futures and Isolates11

 The result of an expression executed in an
Isolate is a Future

 Futures can be passed as arguments to
functions without blocking

 Structural functions can work on arrays
containing futures without blocking

 Primitives which need to reference the value
will block

Futures

Futures and Isolates12

Monadic operator
parallel (∥) derives a
function which:

❖ creates an empty
isolate

❖ executes the operand
inside the isolate

❖ returns a future (and
discards the isolate)

sums←{+/⍳⍵}∥¨⍳100 ⍝ returns 100 futures - IMMEDIATELY

≢sums ⍝ structural functions do not ”realize” futures
100

≢partitions←(100⍴25↑1)⊂sums ⍝ Partitioned Enclose
4

≢¨partitions ⍝ 4 groups, each containing 25 futures
25 25 25 25

+/ +/∥¨partitions ⍝ 4 sums computed in parallel

171700

(We used 1+4+100 parallel threads to compute the end result)

The Parallel Operator ∥

Futures and Isolates13

Inserting or removing Parallel operators does not change the meaning of the code. Thus,
parallelism does not interfere with the notation.

Deterministic Parallelism

sums←{+/⍳⍵} ¨⍳100
partitions←(100⍴25↑1)⊂sums
+/+/ ¨partitions

171700

sums←{+/⍳⍵}∥¨⍳100
partitions←(100⍴25↑1)⊂sums
+/+/∥¨partitions

171700

(as long as your functions have no side effects)

(… and there are no errors)

Futures and Isolates14

 Isolates can be created using isolate.New
… or ø for (really) short.

 The right argument can be

 A vector of vectors of names to be copied

 A namespace reference to be cloned

 A simple vector containing a workspace name to ⎕CY

 An isolate looks, tastes, feels and smells a lot like a
namespace

Session 1 Summary
ø will one day
become primitive ¤

Futures and Isolates15

 An expression executed in an isolate MUST
return a result

 The result may not be a Function or a Class.

 If you pass namespace refs (either way), the
spaces will be copied. Actual refs between
processes are not possible.

 Shy results are emboldened by being futures.

Some Restrictions

Futures and Isolates16

Note 1: the models of Key and Rank omit the implicit "mix",
as this would force futures to be materialised

Spelling
Proposed
Primitive

APL model in
isolate.dws

Alternative
Long Form

¤ ø isolate.New

∥ II isolate.ll

∥¨ IÏ isolate.llEach

∥⌸ IIÐ Isolate.llKey Note 1

∥⍤ IIö Isolate.llRank Note 1

∘.f∥ o_II Isolate.llOuter

Futures and Isolates17

 You don't have to be doing lots of
identical things in parallel

 You could be doing quite different things
asynchronously

Parallel or Async?

Futures and Isolates18

 Verify that you can create an isolate using
ø or isolate.New

 Create a vector of isolates, distribute data across the
elements. Compute something in parallel.

 Practice initialising isolates from various sources:

 a namespace

 a workspace (eg dfns.dws)

 a list of names

Session 1 Exercises

Futures and Isolates19

 The Result of ANY expression executed in an isolate is a future

 The interpreter will block on a future when it needs to know the value and it is not yet
available

 Structural functions can manipulate array of futures without blocking (no need to know
values)

 Errors are signalled when an attempt is made to USE data, not when the error
occurs

 If you don’t look at the data, errors may go completely undetected

 Interrupting returns control to the client, but does NOT stop the function call

 A new call to an isolate which has not finished processing the previous request will be
queued, even if you are not waiting for the result

 However: Calls to a different isolate hosted by the same process will run in a separate
thread

 Isolate.State can be used to check the state of all processes, how many
isolates each is hosting, and how many of them are currently busy.

Session 2 Summary (1/2)

Futures and Isolates20

A 2-Core Computer

How it Works…

A Dyalog
Application

Isolate
Process 1

Isolate
Process 2

Isolate 1

Isolate 2

Dyalog Processes Namespaces

1 2 3 4

Computers

Another Computer
isolate.StartServer 'ip=10.0.0'

Isolate
Process 1

Isolate
Process 2 iss←¤¨4⍴⊂⍬

AddServer '10.0.0.4'

CONGA / TCP
Sockets

Isolate 3

Isolate 4

Futures and Isolates21

 The state of an array containing futures can be inspected using
functions in isolate namespace, each of which returns a result the
same size as the named array:

Session 2 Summary (2/2)

Values Available values, with unfulfilled futures replaced with the
value given as the left argument (⎕NULL by default)

Available A Boolean array with 1 marking values which are computed.

Failed A Boolean array with 1 marking futures which have
encountered errors (and will not be computed).

Running 1s identify futures where the isolate is still running.

Futures and Isolates22

 Experiment until comfortable with the use of

Values Running Failed Available

to inspect the results of asynchronous calls. For example:

isos←isolate.New¨'' '' ''

delays←isos.⎕DL 5 10 15

isolate.Values 'delays'

5.093 [Null] [Null]

 Hint: see section 4.5 of the documentation:
https://docs.dyalog.com/latest/Parallel%20Language%20Features.pdf
Tracking the Status of Asynchronous Expressions

Session 2 Exercises

https://docs.dyalog.com/latest/Parallel%20Language%20Features.pdf

Futures and Isolates23

 Except coffee probably isn't available yet

First Coffee Break

Futures and Isolates24

 isolate.ll (or II) is a model of the parallel operator ∥

 isolate.llEach (or IÏ) is a model of what will be ∥¨

 The parallel operator(s)

 Create one or more empty isolates

(in the processes which have the smallest number of pre-existing isolates)

 Inserts a copy of the operand function into each isolate

 Invokes the function in each isolate

 Discards the isolates

 ”Classical” Dyalog threading can be used to launch a thread which will wait
on an asynchronous computation while the main application thread
continues

Session 3 Summary

Proposed
Primitive

APL model in
isolate.dws

Alternative
Long Form

¤ ø isolate.New

∥ II isolate.ll

∥¨ IÏ isolate.llEach

∥⌸ IIÐ Isolate.llKey

∥⍤ IIö Isolate.llRank

∘.f∥ o_II Isolate.llOuter

Futures and Isolates25

 Experiment with functions derived from
isolate.llEach or IÏ. For example:

fooAsynch←foo isolate.llEach

 Unfortunately I have found that in recent versions
of APL, isolate.ll and II block on monadic
operands, due to a bug in ⊢ (it blocks on futures).

 Write a function which:
 Starts an asynchronous calculation

 Does something else

 Displays output in the session (or if you prefer, a GUI object),
when data becomes available.

Session 3 Exercises

Proposed
Primitive

APL model in
isolate.dws

Alternative
Long Form

¤ ø isolate.New

∥ II isolate.ll

∥¨ IÏ isolate.llEach

∥⌸ IIÐ Isolate.llKey

∥⍤ IIö Isolate.llRank

∘.f∥ o_II Isolate.llOuter

Futures and Isolates26

Callbacks to Main Workspace

##.(C←C+1)

##.(C←C+1)

##.(C←C+1)

I3←¤¨3⍴⊂''

C
C←0

3

Futures and Isolates27

 Configuration settings can be listed using
isolate.Config ''

 Don't enable it unless you need it, as it adds noticeable overhead to
the isolate mechanism

 Callbacks from isolates to the main process are enabled
using

isolate.Config 'listen' 1

 Following a configuration change which affects how
processes are started or connected, it is recommended to
do a

isolate.Reset 0

 The right argument is currently ignored, but please use 0
(if you care about whether application keeps working in the future).

Session 4 Summary (1/2)

Futures and Isolates28

 From an isolate, ## is a reference to the root of the
main (client) process workspace.

 Thus, ##.XYZ corresponds to #.XYZ in the main
workspace (shared by all isolates)

 Calls into any isolate, including calls to ##, are
serialised: Only one call is executed at a time

 This allows function calls to perform atomic updates without
adding synchronisation mechanisms

Session 4 Summary (2/2)

Futures and Isolates29

The 2nd bullet point
was important in
2014

Should hopefully not
be relevant today

 Unable to create isolate processes

 If not using the default isolate workspace location: Check the
setting of the “workspace” option: remember that runtime
interpreters may have no WSPATH

 Switch to ('runtime' 0) and see whether you can spot any hints in
the session output.

 Everything is hung…

 Try restarting all threads. It is recommended not to use “pause
threads on error” when using isolates (should not be a problem in
recent versions of Dyalog APL).

 If you have had an error or interrupt deep inside the isolate model,
you may have a thread pool issue. Try (isolate.Reset 0).

Troubleshooting #1

Futures and Isolates30

 Call an expression in an isolate which makes
a callback to the root, e.g.

myIS.(##.foo)

(Hint: set 'listen' to 1)

 Repeat the call from more than one isolate
in parallel

isolates.(##.foo)
Verify that the calls to foo are serialised.

Session 4 Exercises

Futures and Isolates31

2nd Coffee Break

Futures and Isolates32

 Enable debugging with:
isolate.Config 'onerror' 'debug'

 This will automatically select the development
interpreter, rather than a runtime (regardless of the
runtime configuration setting).

 Switch back with
isolate.Config 'onerror' 'signal'

 Under Windows, the window caption of a suspended
isolate process is modified to help you find it

Session 5 Summary

Futures and Isolates33

 To debug with RIDE, set:
isolate.Config 'rideinit' 'POLL:address:port'

 A RIDE window will be opened for each isolate process, so you
probably want to pretend you only have 2 processors

isolate.Config 'processors' 2

 Set RIDE up to listen on the selected port

 NB: Select "Respawn listener…"

Session 5 Summary

Futures and Isolates34

 Put a bug in your code, and fix it inside an isolate

 If you have RIDE installed, see if you can get
debugging working

Session 5 Exercises

Futures and Isolates35

Configuration Options
Option Name Default Description

drc # Location of CONGA namespace to use
homeport 7051 The lowest port number that will be used
homeportmax 7151 The highest port number to try listening on
isolates 99 Number or isolates allowed per process
listen 0 1 to allow isolates to issue callbacks to parent

process
maxws '64000' By default, uses the same setting as the current

APL session
rideinit '' Ride configuration, typically

CONNECT:ip-address:port number
Onerror 'signal' Signal errors to the line waiting for results
processes 1 The number of processes to start per processor
processors 4 Number of processors (default determined

automatically)

runtime 1 Whether to run isolates using the runtime engine
workspace 'isolate' Workspace to load when starting new isolates

Futures and Isolates36

 Beware of isolates sharing a process

 Don’t create excessive numbers of isolates:

ISOLATE ERROR: All processes are in use
{+/⍳⍵}IÏ ⍳500
∧

 Remember refs cannot cross process borders

 Namespaces will always be COPIED
e.g. ref←is1.ns

More limitations / Gotchas

Futures and Isolates37

 Warning: Ports in use…

 Either you have two APL sessions both using isolates

 Or you have “zombie” isolate processes, typically created if you exit from
your APL process without running the destructors

 Currently, there is no way to kill them other than using TaskMgr

Troubleshooting #2

Futures and Isolates38

 If you have a large number of parallel calls to make, one
isolate per call may not give the highest throughput
 You may end up with "too much for your hardware"

 If the calls do not all take the same amount of time, some of the
isolates will be idle part of the time

 Instead, it may be better to create a "reasonable" number of
isolates and reuse them

 The namespace ll in the distributed isolate workspace
contains operators Each and EachX, which help with this

Re-using Isolates

Futures and Isolates39

 ll.Each is a monadic operator utility which creates one isolate for each processor, makes one
function call to each isolate, and then re-uses them as they become available:

(⎕Dl ll.Each) 20⌽¯1,?40⍴10

 ll.EachX gives you more control: The right operand is an array of references to the isolates that
you want to use, and the left argument allows you to specify a callback function to be invoked each
time a result is returned, and some user-defined data.

iss←ø¨6⍴⊂'myws' ⍝ 6 isolates made from myws
('MyCalc' 'MyCallBackFN' 'Running MyCalc') ll.EachX iss) ⍳100

 If you do not provide a callback function, EachX will pop up a progress form… If the user closes this
form, the operation will be abandoned.

Re-using isolates, continued…

Futures and Isolates40

EachX Progress Form

Futures and Isolates41

 The distributed version of ll is a quick
hack, which can be improved

 The folder Examples in the distributed
materials contains a much improved
version of ll

 It will be in the v19.0 isolate workspace
& documentation

Unfortunately…

Futures and Isolates42

[new] ll.EachX semi-globals

Futures and Isolates43

 The left operand of EachX can be a two or three element vector:
(fn callbackfn user_data)

 callbackfn is called each time a function call is completed, with a
dummy right argument; it can inspect documented semi-globals and
produce output

 The callback function must return 0 to continue or 1 to cancel the
calculation

 If you do not supply a callback fn, a form is displayed to track progress;
closing this form aborts the operation

 Deciding how to parallelise your operations (if at all) is "complicated"

Session 6 Summary (2/2)

Futures and Isolates44

 Test ll.Each and ll.EachX
For example:

⎕DL ll.Each ?40⍴10

 Advanced: Write your own callback
function. If you want to do this, first:

]link.import # [TP2]/Mandelbrot/ll.apln

Session 6 Exercises

Futures and Isolates45

 Let's take a closer look at what kinds of
things we can actually speed up…

Session 7 – Performance

Futures and Isolates46

One APL Process: 20s

10 processes: 5s

5 Processes: 6s

Futures and Isolates47

Called with iterations=1000 and (⍴set)=4 million
or elements in cur, inx starts at 4 million and reduces as points escape

∇ count←iterations MandelbrotCalc set;inx;cur;i;esc
[1] ⍝ Inner loop of Mandelbrot
[2] ⍝ iterations => Max nummer of iterations
[3] ⍝ set => complex numbers to calculate iterations for.
[4] cur←set
[5] inx←⍳≢count←(≢set)⍴iterations ⍝ points that don't escape get maximum value
[6] (cur inx)←(~IsMandelbrot set)∘/¨(cur inx) ⍝ trim points that are known not to escape
[7] :For i :In ⍳iterations

43% [8] esc←4<cur×+cur ⍝ these will never come back
1% [9] count[esc/inx]←i ⍝ store iteration number at which they escaped

10% [10] (cur inx)←(~esc)∘/¨(cur inx) ⍝ stop computation for escaped points
[11] :If 0∊⍴inx ⋄ :Leave ⋄ :EndIf ⍝ all have escaped ⋄ done

45% [12] cur←set[inx]+×⍨cur ⍝ Mandelbrot step : z←c+z*2
[13] :EndFor
[14]

∇

Futures and Isolates48

Baseline

Each

EachX

Isolates

Futures and Isolates49

MBTest results

MBReport z

Baseline 21.5 seconds. Speedup factors:

Mode \ Blocks 4 12 100 1000
each 1.1 1.3 1.5 1.4
isolates 1.2 1.5 1.8 1.8
eachX 1.4 1.5 1.9 2.4
SHOWHR 1.4

Modes:
each: Call MandelBrotCalc¨ on partitioned data
isolates: One isolate per group
eachX: EachX using 12 isolates
SHOWHR: As eachX but providing GUI updates

Futures and Isolates50

Fundamental

 Replace model with primitives
 Perhaps primitives only run "in process"

isolates

 Launching [remote] processes and
other things that "require
configuration" remains as APL code

 See next slide

 Add ability to return functions or
classes

Pragmatic

 Start-up logging

 Ability to terminate an
asynchronous call

 Fault tolerance: ll.EachX to
transfer work to remaining isolates
on network failure etc

 Management mechanism for
“batches” of work

Potential Future Work - Discussion

Futures and Isolates51

Syntax Name Current Equivalent Description

f∥0 Thread 703⌶foo& Run foo in current ws with threads.
f could be a .NET method.

f∥1 Fork ⎕SAVE and create isolates from ws.
Similar to ⎕RUN in SHARP APL. *

Invoke foo in forks of the current ws,
in the same process.

f∥⍬ Parallel
Each

fÏ Current isolate model does this:
invoke f in empty isolates

f∥iss Isolate iss.⎕FX ⊂⎕CR f ⋄ iss.f Run in existing isolates

Morten's Proposal for Dyadic ∥

All of the above return futures
Also extend ⎕NA so ∥ (in place of &) gives a future-returning function

Futures and Isolates52

 Goal: Allow the APL user to explicitly express
parallelism in a ”natural” way

 How close are we?

Futures and Isolates

Futures and Isolates53

If we have time …

 Isolate servers

 Using your application workspace as the
isolate host

Extra Topics

Futures and Isolates54

 Start isolate processes using StartServer:
isolate.StartServer 'ip=192.168.0'

 This uses all the usual Config settings to decide how many processes
to start, whether to use runtime, allow debugging, etc.

 As a client, you can add and remote servers using:
isolate.AddServer 'address' ports
isolate.RemoveServer 'address'

 Use isolate.State '' to monitor status.

 You can "easily" launch isolate servers in the cloud using the
dyalog/dyalog docker container.

 We will produce a dyalog/isolate contained which is suitable for launching in
a scaled environment.

Using Remote Servers

Futures and Isolates55

 By default, isolate processes start by loading ws/isolate.dws

 We have seen how you can create isolates (namespaces) by copying a workspace
into a namespace. However, you may prefer to have your code in the root (#) ,
perhaps even running a thread to keep your application alive in each process.

 To use your own application workspace as the base for isolate processes:

)COPY conga DRC
)COPY isolate isolate

 Modify your latent expression to call isoStart before your own application boot.
For example:

⎕LX←'#.isolate.ynys.isoStart ⍬ ⋄ Run'

 Your application boot function use isolate.isSlave to check for this case and
no start the application in that case. For example:

→isolate.isSlave⍴0

Using your own WS as "host"

