JDYALOC

Olh&o 2022

Futures and Isolates
(TP2)

Morten Kromberg

Goals

Give an overview of Futures and Isolates
Discuss the implementation and configuration options

Demonstrate how to troubleshoot and debug
applications which use isolates

Discuss how to determine whether a given application is
likely to speed up...

If we have time, experiment with parallelising own code
(did anyone bring something to test)?

Futures and Isolates

NB: Mostly Repeat of Dyalog'14

Nothing fundamental has changed

There is no fundamental change in
functionality
Significant usability enhancements and better
utilities
It now works quite reliably in all supported
versions of APL

This was not the case in 2014

Futures and Isolates

The Plan

Six sessions of 10-minute intro + 20 minutes experimentation
13:30-14:30
Introduction: What are futures and isolates?
Errors, Tracking progress, Interrupts
14:45-15:45
Operator models
Configuration Options
16:00-17:00
Debugging & Troubleshooting

Performance - when and how to use isolates in practice

Futures and Isolates

Materials

Materials used can be found in
https://qgithub.com/dyalog-training/2022-TP2

¢ Unzip the latest release, or
¢ Copy the folder 2022-TP2 from the USB drive

¢ Also open atabon
https://docs.dyalog.com/latest/Parallel%20Language%20Features.pdf

Futures and Isolates

https://github.com/dyalog-training/2022-TP2
https://docs.dyalog.com/latest/Parallel%20Language%20Features.pdf

") Dyalog - Documentation Centre X =+
« = C & dyalog.com/documentation_182.htm

51 Apps Link APL Flying & Sailing Car Dyalog Cloud SBO Travel Linux Sport Productivity Git Covid Ferie 2022
* UNIX-SPeCITIC Documentanon

« macOS-Specific Documentation
» Tools Documentation

« Cheat Sheets

« Release Notes

Online Help

« Miscellaneous

« Previous Versions

For each document, a summary provides a brief description and a statement of the level of understanding expected from the
reader. You can toggle the display of each individual summary, or for all documents at once:

[Display all summaries] [Hide all summaries J

NOTE: In all Dyalog documentation, the values of JI10 and ML are 1.

Core Documentation
These documents describe the details of the language and program construction; they are not specific to an operating system.

).::: Dyalog APL Language Reference Guide (summary)

Y

% Dyalog Programming Reference Guide (summary)

J..:,\‘\ .NET Core Interface Guide (summary) NOTE: Dyalog Unicode edition only
)3 Comparison of NET Core/Framework Interfaces

J_’,; Compiler User Guide (summary)

).:‘ Parallel Language Features (summary))

LA

Shared Code Files User Guide (summary) NOTE: Dyalog Unicode edition only

RN rmmmememEdE IN i vardminse= Crame i e N 1 as ot e g -

™) Dyalog - Documentation Centre X ") Parallel Language Features X+ ~ - a x
« =2 C 8 docs.dyalog.com/latest/Parallel%20Language%20Features.pdf Q 2 W » 0O G
£2 Apps Link APL Flying & Sailing Car Dyalog Cloud SBO Travel Linux Sport Productivity Git Covid Ferie 2022

= Parallel Language Features

Contents

INTRODUCTION
1.1 RelSE NOTES....ceveeiiieirieieseeieee ettt an e sr e b a s b er s sre b enernnnansen

PHILOSOPHICAL PREAMBLE

2.1 APLis aParallel NOtation ..o ot
2.2 Automatic Parallelisationcociiiiiniienene e 3
2.3 Explicit ParalleliSation ...t
INTRODUCING FUTURES AND ISOLATES

3.1 Isolates.

3.2 Futures....

3.3 Parallel OPerator.....coccoiiiiieieeiciie ettt s saeneene e snesnesnes e ans T
THE VERSION 14.X IMPLEMENTATION

4.1 Parallel Each...

4.2 Explicit or Persistent Isolates ..

4.3 Blocking...

4.4 Errors in Asynchronous Expressions ...

4.5 Tracking the Status of Asynchronous Expressions..

4.6 Interrupting Asynchronous Expressions

4.7 Debugging Asynchronous Expressions..........

CALLING BACK FROM ISOLATES

Futures and Isolates

Goal: Allow the APL user to explicitly express
parallelism in a natural way

In the interpreter, futures and isolates enable
coarse-grained task parallelism

Tasks with a duration of at least 100ms

In a compiler, futures can be used to express
fine-grained data parallelism

Futures and Isolates

Isolates

An Isolate tastes, smells, looks like a
Dyalog namespace, except that...

Expressions executed in the isolate run
in a separate process from the main
interpreter thread (”in parallel”)

Futures and Isolates

Isolates in Action

I3«x " 3pc
I3.X+(1 2 3)(4 5)6
I3.({(+Fw)+#w}X)

2 4.5 6

Futures and Isolates

Computers | | IDUGIOGIPMOCESSERN] | Namespaces |

How it Works...

CONGA/TCP < >
Sockets

Another computer

isolate.StartServer 'ip=10.0.0"'

A 2-Core Computer

AddServer '10.0.0.4"°
iss«x 4pc@

10

Futures and Isolates

Futures

The result of an expression executed in an
Isolate is a Future

Futures can be passed as arguments to
functions without blocking

Structural functions can work on arrays
containing futures without blocking

Primitives which need to reference the value
will block

11

Futures and Isolates

The Parallel Operator ||

sums<{+/1w}||""1100 A returns 100 futures - IMMEDIATELY

#sums A strictural functions do not ”realize” futures
100

#Zpartitions(100p25t1)csums A Partitioned Enclose
L

Z partitions A 4 groups, each containing 25 futures
25 25 25 25

+/ +/||"parititions A 4 sums computed in parallel

17170690

(We used 1+4+100 parallel threads to compute the end result)

Monadic operator
parallel (||) derives a
function which:

creates an empty
isolate

executes the operand
inside the isolate

returns a future (and
discards the isolate)

12

Futures and Isolates

Deterministic Parallelism

Inserting or removing Parallel operators does not change the meaning of the code. Thus,
parallelism does not interfere with the notation.

sums<{+/ww}| 1100
partitions«(100p25t1)csums
+/+/||"partitions

171700

(as long as your functions have no side effects)

(... and there are no errors)

13

Futures and Isolates

Session 1 Summary

Isolates can be created using isolate.New
..or @ for (really) short.

The right argument can be
¢ A vector of vectors of names to be copied
¢ A namespace reference to be cloned

¢ Asimple vector containing a workspace name to [ICY

An isolate looks, tastes, feels and smells a lot like a
namespace

14

Futures and Isolates

Some Restrictions

An expression executed in an isolate MUST
return a result

The result may not be a Function or a Class.

If you pass namespace refs (either way), the
spaces will be copied. Actual refs between
processes are not possible.

Shy results are emboldened by being futures.

15

Futures and Isolates

Proposed | APL modelin | Alternative
Primitive | isolate.dws Long Form

isolate.
[II isolate. Ll
I IT isolate.llEach
IIE 11D Isolate.llKey Note 1
e II% Isolate.llRank Note 1
o fl o_II Isolate.llOuter

Note 1: the models of Key and Rank omit the implicit "mix",
as this would force futures to be materialised

16 Futures and Isolates

Parallel or Async?

You don't have to be doing lots of
identical things in parallel

You could be doing quite different things
asynchronously

17

Futures and Isolates

Session 1 Exercises

Verify that you can create an isolate using
gorisolate.New

Create a vector of isolates, distribute data across the
elements. Compute something in parallel.

Practice initialising isolates from various sources:
a namespace

a workspace (eg dfns.dws)

a list of names

18

Futures and Isolates

Session 2 Summary (1/2)

The Result of ANY expression executed in an isolate is a future

The.lingtlarpreter will block on a future when it needs to know the value and it is not yet
available

St{uctL)Jral functions can manipulate array of futures without blocking (no need to know
values

Errors are signalled when an attempt is made to USE data, not when the error
occurs

If you don’t look at the data, errors may go completely undetected
Interrupting returns control to the client, but does NOT stop the function call

A new call to an isolate which has not finished processing the previous request will be
queued, even if you are not waiting for the result

Hhowe(\j/er: Calls to a different isolate hosted by the same process will run in a separate
threa

Isolate.State can be used to check the state of all processes, how many
isolates each is hosting, and how many of them are currently busy.

isolate.State

Host

localhost

Port
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063

Isolates

Busy

o

oo O0O0CO0OO0O0O0O0O

19

Futures and Isolates

Computers | | IDUGIOGIPMOCESSERN] | Namespaces |

How it Works...

CONGA/TCP < >
Sockets

Another computer

isolate.StartServer 'ip=10.0.0"'

A 2-Core Computer

AddServer '10.0.0.4"°
iss«x 4pc@

20

Futures and Isolates

Session 2 Summary (2/2)

® The state of an array containing futures can be inspected using
functions in isolate namespace, each of which returns a result the
same size as the named array:

Values Available values, with unfulfilled futures replaced with the
value given as the left argument (ONULL by default)
WERNELREEE A Boolean array with 1 marking values which are computed.

Failed A Boolean array with 1 marking futures which have
encountered errors (and will not be computed).

m 1s identify futures where the isolate is still running.

21 Futures and Isolates

Session 2 Exercises

Experiment until comfortable with the use of

Values Running Failed Available

to inspect the results of asynchronous calls. For example:

isos«+isolate.New™
delays<«isos.[JDL 5 10 15
isolate.Values 'delays'

5.093 [Null]l [Null]

Hint: see section 4.5 of the documentation:
https://docs.dyalog.com/latest/Parallel%20Language%20Features.pdf
Tracking the Status of Asynchronous Expressions

22 Futures and Isolates

https://docs.dyalog.com/latest/Parallel%20Language%20Features.pdf

First Coffee Break

Except coffee probably isn't available yet

23

Futures and Isolates

Session 3 Summary

® isolate.ll (or IT)is a model of the parallel operator ||
o isolate.llEach (or I1)is a model of what will be || **
Proposed | APL modelin | Alternative
g The parallel Operator(s) Primitive | isolate.dws Long Form
® Create one or more empty isolates X @ isolate.New
(in the processes which have the smallest number of pre-existing isolates) I II isolate.ll
® Inserts a copy of the operand function into each isolate I 1 isolate.llEach
IID Isolate.llK
® Invokes the function in each isolate I8 sotate ey
II's 116 Isolate.llRank
® Discards the isolates
o fll o_II Isolate.llOuter
© "Classical” Dyalog threading can be used to launch a thread which will wait
on an asynchronous computation while the main application thread
continues

Futures and Isolates

Session 3 Exercises

¢ Experiment with functions derived from
isolate.llEach or II.Forexample:

fOOASYﬂCh*fOO isolate.llEach Proposed | APL modelin | Alternative
Primitive | isolate.dws Long Form

¢ Unfortunately | have found that in recent versions x 0
of APL, isolate.ll and II block on monadic I I
operands, due to a bug in + (it blocks on futures). I -

¢ Write a function which: I8 110

I 6
e Starts an asynchronous calculation o £l OIIII

¢ Does something else

o Displays output in the session (or if you prefer, a GUI object),
when data becomes available.

isolate
isolate
isolate
Isolate
Isolate

Isolate

.New
Lt
.LLlEach
. LLKey
. LLRank

.LLlOuter

25

Futures and Isolates

Callbacks to Main Workspace

26

Futures and Isolates

Session 4 Summary (1/2)

Configuration settings can be listed using
isolate.Config "'

Don't enable it unless you need it, as it adds noticeable overhead to
the isolate mechanism

Callbacks from isolates to the main process are enabled
using
isolate.Config 'listen' 1

Following a configuration change which affects how

processes are started or connected, it is recommended to
doa

isolate.Reset O

The right argument is currently ignored, but please use 0
(if you care about whether application keeps working in the future).

27 Futures and Isolates

Session 4 Summary (2/2)

From an isolate, ## is a reference to the root of the
main (client) process workspace.

Thus, ## . XYZ corresponds to #. XYZ in the main
workspace (shared by all isolates)

Calls into any isolate, including calls to ##, are
serialised: Only one call is executed at a time

This allows function calls to perform atomic updates without
adding synchronisation mechanisms

28

Futures and Isolates

Troubleshooting #1

® Unable to create isolate processes

If not using the default isolate workspace location: Check the
setting of the “workspace” option: remember that runtime
interpreters may have no WSPATH

Switchto (‘runtime' 0)and see whether you can spot any hints in
the session output.

® Everything is hung..

Try restarting all threads. It is recommended not to use “pause
threads on error” when using isolates (should not be a problem in
recent versions of Dyalog APL).

If you have had an error or interrupt deep inside the isolate model,
you may have a thread poolissue. Try (isolate.Reset 0).

29

Futures and Isolates

Session 4 Exercises

led Ch\Program Files\Dyalog\Diyalog APL-64 182 Un... — O X
|

| Eile Edit View Window Session Log Action Options Jools

Call an expression in an isolate which makes | T elp

W5 g + W % | Object @ g & ¥ | Tool | Edit |° Session

a Ca llba Ck to t h e ro Ot’ e] g . Language Baar ot D D D D D D D S D L L T L s x
- +-x+*xafo!? |[liT4+ =#<<>z=# g E

myIS. (##.foo)

isolate.Config '’

d #
. ' . ' h;;eport 7051
(Hint: set 'listen' to 1) hamepor tmax 7151
. listen 0
Repeat the call from more than one isolate maxus 26
. onerror g1 gl"lﬂ
in parallel outfile 1
o processes
isolates. (##.foo) processors 12
. . . protocol IPv4
Verify that the calls to foo are serialised. Fideinit
runtime 1
| workdir

| uorksruce

izsolate.dws

Balitor ottt b D T i D D D b e D

Debugger T D e L ﬁ' D ><
Futures and Isolates ‘ fesd - i
. CurObj: &:1 Ooq:0 0OTRAP 0OSI:0 [OI0:1 [OML:1 _

2nd Coffee Break

31

Futures and Isolates

Session 5 Summary

Enable debugging with:
isolate.Config 'onerror' 'debug'

This will automatically select the development
interpreter, rather than a runtime (regardless of the
runtime configuration setting).

Switch back with
isolate.Config 'onerror' 'signal'

Under Windows, the window caption of a suspended
isolate process is modified to help you find it

32

Futures and Isolates

Session 5 Summary

To debug with RIDE, set:

isolate.Config 'rideinit' 'POLL:address:port'

A RIDE window will be opened for each isolate process, so you

probably want to pretend you only have 2 processors

isolate.Config 'processors' 2

Set RIDE up to listen on the selected port

NB: Select "Respawn listener..."

S
%) RIDE-Dyalog Session

Dyalog Edit
last configuration

TryAPL
Connect localhost:4502
Connect WSL:4502

WsL

33

Futures and Isolates

Local 18.2

>

Listen on 4502 >

>

>

>

>

Configuration name:

Listen on 4502
Type: Listen
[] save protocol log Log file
Host: localhost
Port: 4502

Respawn listener on connection

-

Session 5 Exercises

Put a bug in your code, and fix it inside an isolate

If you have RIDE installed, see if you can get
debugging working

34

Futures and Isolates

Configuration Options
#

Location of CONGA namespace to use
homeport 7051 The lowest port number that will be used

homeportmax 7151 The highest port number to try listening on
isolates 99 Number or isolates allowed per process
listen 0 1toallowisolates to issue callbacks to parent
process
'64000"' By default, uses the same setting as the current
APL session

rideinit Ride configuration, typically

CONNECT:ip-address:port number
Onerror "signal' Signal errors to the line waiting for results

processes 1 The number of processes to start per processor

processors 4 Number of processors (default determined
automatically)

runtime 1 Whether to run isolates using the runtime engine

workspace 'isolate' Workspace to load when starting new isolates

Futures and Isolates

More limitations / Gotchas

Beware of isolates sharing a process

Don’t create excessive numbers of isolates:

ISOLATE ERROR: ALl processes are in use
{+/ww}II 1500

A

Remember refs cannot cross process borders

Namespaces will always be COPIED
e.g. ref<«isl.ns

36 Futures and Isolates

Troubleshooting #2

Warning: Ports in use..
Either you have two APL sessions both using isolates

Or you have “zombie” isolate processes, typically created if you exit from
your APL process without running the destructors

Currently, there is no way to kill them other than using TaskMgr

37 Futures and Isolates

Re-using Isolates

If you have a large number of parallel calls to make, one
isolate per call may not give the highest throughput

You may end up with "too much for your hardware"

If the calls do not all take the same amount of time, some of the
isolates will be idle part of the time

Instead, it may be better to create a "reasonable" number of
isolates and reuse them

The namespace L L in the distributed isolate workspace
contains operators Each and EachX, which help with this

38 Futures and Isolates

Re-using isolates, continued...

L L. Each is a monadic operator utility which creates one isolate for each processor, makes one
function call to each isolate, and then re-uses them as they become available:

(ODl Ll.Each) 204671,240p10

L L. EachX gives you more control: The right operand is an array of references to the isolates that
you want to use, and the left argument allows you to specify a callback function to be invoked each
time a result is returned, and some user-defined data.

iss«p 6pc'myws' A 6 isolates made from myws
('MyCalc' 'MyCallBackFN' 'Running MyCalc') Ll.EachX iss) 1100

If you do not provide a callback function, EachX will pop up a progress form... If the user closes this
form, the operation will be abandoned.

39 Futures and Isolates

EachX Progress Form

Il.Each Progress - ODL (41 calls)

| lso#H1
lso #2
lso H#3
lso H4

| lsoH5
lso HE
lso H7
lso H8
lso H9
lso #10
lso #11
lso #12
Total
Failed:

3
2
3
3
3
3
2
2
3
2
2
3

3

1

40

Futures and Isolates

Unfortunately...

The distributed version of L L is a quick
hack, which can be improved

The folder Examp Les in the distributed
materials contains a much improved
version of L |

It will be in the v19.0 isolate workspace
& documentation

411

Futures and Isolates

[new] L L .EachX semi-globals

Documented semi-globals available to callback functions

SHAPE:

MN:

RESULT:
DONE :
FAILED:
INDEX:
ISO_COUNT:

I50_COUNTERS:

THIS:
ISO_IX:
USER_DATA:

Shape of array

x/SHAPE

Ravelled result

1 when corresponding element computed

1 if corresponding element failed
Progress index

Number of isolates in use

Number of calls processed by each isolate
Current index

Index of isolate that produced the result
User-provided information

42

Futures and Isolates

Session 6 Summary (2/2)

The left operand of EachX can be a two or three element vector:
(fn callbackfn user_data)

cal lbackfnis called each time a function call is completed, with a
dummy right argument; it can inspect documented semi-globals and
produce output

The callback function must return O to continue or 1 to cancel the
calculation

If you do not supply a callback fn, a form is displayed to track progress;
closing this form aborts the operation

Deciding how to parallelise your operations (if at all) is "complicated"

43

Futures and Isolates

Session 6 Exercises

Test LL.Eachand Ll.EachX

For example:

ODL ll.Each ?40p10

Advanced: Write your own callback
function. If you want to do this, first:

llink.import # [TP2]/Mandelbrot/Ll.apln

44 Futures and Isolates

Session 7 — Performance

Let's take a closer look at what kinds of
things we can actually speed up...

45

Futures and Isolates

&) CLEAR'WS - Dyalog APL/W-64 — a
| Eile Edit View Window Session Log Action Options Tools Threads Help
|- ws o + % Object @@ mm) = M 4 M Tool P o & Edit [g1 9 @ | Session
I.LanguageBar 368 868 : . 1 : .

le« +-x+xoFo!l?

V r+loop n

[1] r+«[JAI[3]
(2] :Repeat
[3] nen-1
[4] tUntil ns0
[5] r«[JAI[3]-r

v

loop 1EB8

19708

z+[JAI[3] ¢ t+«0+iss.loop 1e7-% [«(OAI[3]-z).,t
5021 4717 4678 4694 4684 4611 4808 L4698 4726 4659 LELL

z+[JAI[3] o t+«0+(5tiss).loop 2e7 «« U«(0AI[3]-z),t
6001 5823 5962 5959 5860 5802

{14 Task Manager
File Options View

| Processes ; Performan

CPU
11% 4,15 GHz

Memo
15,5/31,7 GB (49%)

Disk 0 (C)
350
4%

Ethernet
Local Area Conne...
S0 R 0Kbps

WiFi
Wi-Fi
5: 32,0 R: 32,0 Kbps

Ethernet
vEthernet (W5L)
5: 0 R: 0Kbps

wPU O
Intel(R) UHD Grap...
6%

~ Fewer details

i App history Startup Users Details Services

CPU

% Utilisation

Intel(R) Core(TM) i7-9850H CPU @ 2.60GHz

100%

One APL Process: 20s|

5 Processes: 6

| -’ -
60 seconds
Utilisation _ Spaed Base spesd 2,59 GHz
Ti% 4,15GHz e !
Cores: B

Processes_Jipaf" Handles Logical processors: 12
25 A796 210733 Vitualisation: Enabled

X L1 cache: 3B4KB
Up time 12 cache: 1.5MB
1:22:38:37 L3 cache: 12,0MB

@ Open Resource Monitor

L2

RA

Debugger [
Ready... Ins
E8 (Undefined) &:1 0OpQ:0 OTRAP [OSI:0 [OIO:1

CurObj:
L

Editor

O

OML:1

Isolates

Called with iterations=1000 and (pset)=4 million
or elements in cur, inx starts at 4 million and reduces as points escape

4+3%
1%
10%

45%

(1]
(2]
(3]
(4]
(5]
(6]
(7]
(8]
(9]
(10]
(11]
[12]
[13]
[14]

V count<«iterations MandelbrotCalc set;inx;cur;isesc
A Inner loop of Mandelbrot
A iterations => Max nummer of iterations
A set => complex numbers to calculate iterations for.
cur<set
inx<itZcount«(#set)piterations A points that don't escape get maximum value
(cur inx)<«(~IsMandelbrot set)e/"(cur inx) @A trim points that are known not to escape
:For i :In ititerations
esc«l<curx+cur
count[esc/inx]«i
(cur inx)<«(~esc)e/ (cur inx)
:If Oepinx ¢ :Leave ¢ :EndIf
cur<set[inx]+x=cur
:EndFor

these will never come back

store iteration number at which they escaped
stop computation for escaped points

all have escaped ¢ done

Mandelbrot step : z<«c+zx*2

D D D DO® D

a7

Futures and Isolates

- 1) Brot

File Edit Syntax Refactor View

Tt €3> 100 PO & IS E € ||searcn...

: S #.Brot

- E-[9 [Methods]

----- &1 AnimatedBuddhabrot
----- # Buddhabrot

----- #1 Buddhabrotimage
..... & ColorMap

..... & Examples

----- &1 IsMandelbrot

----- &3 Mandelbrot

----- &3 MandelbrotCale
----- &1 Mandelbrot!

----- &3 Mandelbrotimage

----- #1 MBCUpdate
----- #1 MBCUpdateHR.

[3]

[u]

[5]

[e]

[71

[8]

[s]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]

Modes:

x~|% 1 each:

isolates:

x<xmin+(xmax=-xmi

Call MandelBrotCalc™ on partitioned data
One isolate per group

EachX using 12 isolates

As eachX but providing GUI updates

y«ymin+(ymax-ymi .gmamgnhﬁxﬁ,:
points*—lSOOI,(OJ SHO“HR‘
:If (=MODE)e'' '[ocal’

counters<iterations MandelbrotCalc points A Baseline

:Else

sets«((#points)p([(#points)+GROUPS)t1)cpoints

calcns+«[INS 'MandelbrotCalc'
:If MODE='each' A ---
counters+>,/fiterations

:Elself MODE='eachX' A ---

'‘IsMandelbrot' 'MBC' A fns to inject into isolate

Just break it up into sets, but use local each operato >

MandelbrotCalc' 'sets

Use LL.EachX to serially use oneisolate per processor

procs<«#.isolate.Config'processors’

isos«#.p procspcalcns
counters+«(#"sets)p”0 A

MBCDONE+0O
MBCUpdateHREO o]
futures«(iterations, "1#sets)('MBC'
MBCDONE+1 o]
counters<e2>"futures A
MBECUpdateHR 1 o]

tElse A —---

isos+#.0 GROUPSpcalcns
futures+iterations

To be filled in by MBCUpdate, called as each result co >

Start HTMLRenderer update thread
'MBCUpdate'#.l1l2.EachX isos)sets
Stop HTMLRenderer thread
Extract result, ignoring set
Final Update of GUI

indices

Use one isolate per group regardless of processor coun p

isos.{o MandelbrotCalc w}sets

MNamespace

Pos: 158/274,0

MBTest results

MBReport z

Baseline 21.5 seconds. Speedup factors:

Mode \ Blocks 4 12 100 1000
each 1.1 1.3 1.5 1.4
isolates 1.2 1.5 1.8 1.8
eachX 1.4 1.5 1.9 2.4
SHOWHR 1.4
Modes:
each: Call MandelBrotCalc™ on partitioned data
isolates: One isolate per group
eachX: EachX using 12 isolates

SHOWHR : As eachX but providing GUI updates

Futures and Isolates

Potential Future Work - Discussion

Fundamental

Pragmatic

Replace model with primitives

Perhaps primitives only run "in process"

isolates

Launching [remote] processes and

other things that "require

configuration" remains as APL code

See next slide

Add ability to return functions or

classes

Start-up logging

Ability to terminate an
asynchronous call

Fault tolerance: Ll .EachX to
transfer work to remaining isolates
on network failure etc

Management mechanism for
“batches” of work

50

Futures and Isolates

Morten's Proposal for Dyadic |

Syntax_| Name _| Current Equivalent

fllo Thread 703Ifo08& Run foo in current ws with threads.
f could be a .NET method.
fll1 Fork [OSAVE and create isolates from ws. Invoke foo in forks of the current ws,
Similar to DRUN in SHARP APL. * in the same process.
flle Parallel fI Current isolate model does this:
Each invoke f in empty isolates
flliss Isolate iss.OFX <dCR f ¢ iss.f Run in existing isolates

All of the above return futures
Also extend [|NA so || (in place of &) gives a future-returning function

51

Futures and Isolates

Futures and Isolates

Goal: Allow the APL user to explicitly express
parallelism in a "natural” way

How close are we?

52

Futures and Isolates

Extra Topics

If we have time ...
Isolate servers

Using your application workspace as the
isolate host

53

Futures and Isolates

Using Remote Servers

Start isolate processes using StartServer:
isolate.StartServer 'ip=192.168.0"'

This uses all the usual Config settings to decide how many processes
to start, whether to use runtime, allow debugging, etc.

As a client, you can add and remote servers using:
isolate.AddServer 'address' ports
isolate.RemoveServer 'address'

Use isolate.State to monitor status.

You can "easily" launch isolate servers in the cloud using the
dyalog/dyalog docker container.

We will produce a dyalog/isolate contained which is suitable for launching in
a scaled environment.

Futures and Isolates

Using your own WS as "host"

By default, isolate processes start by loadingws/isolate.dws

We have seen how you can create isolates (namespaces) by copying a workspace
into a namespace. However, you may prefer to have your code in the root (#)
perhaps even running a thread to keep your application alive in each process.
To use your own application workspace as the base for isolate processes:

)COPY conga DRC
JCOPY isolate isolate

Modify your latent expression to call isoStart before your own application boot.
For example:

OLX«'#.isolate.ynys.isoStart & ¢ Run'

Your application boot function use isolate. isSlave to check for this case and
no start the application in that case. For example:

+isolate.isSlavepO

55

Futures and Isolates

