
Olhão 2022

Creating, Maintaining
and Publishing
APL Packages

Josh David
Brian Becker

Creating, Maintaining and Publishing APL Packages1

 Session 1

 Why and What

 APL Packages

 Exercise 1 – Introduction to Tatin

 Session 2

 More Tatin

 Exercise 2 – create a package with dependencies

 Session 3

 Recommended Practices

 Workflow

Agenda

Creating, Maintaining and Publishing APL Packages2

 Introductions
 Goals for this Workshop

 Understand what a package is in general and in an APL context

 Learn a bit about Tatin – an APL package manager

 Build and publish a package with dependencies

 Understand recommended practices

 Learn a bit about workflow and Dado

 Leave energized and invigorated to create and publish your own packages

Introductions and Goals

Creating, Maintaining and Publishing APL Packages3

Building a Treefort

 Buy a hammer, or better yet, borrow one

 Buy some standard dimensional lumber

 Buy some standard fasteners (nails, etc)

 Buy or borrow a ladder

 Build the treefort

Creating, Maintaining and Publishing APL Packages4

Building a Treefort the APL way

 Dig in the ground for iron ore
 Smelt the ore to fashion your own hammer,

nails and saw
 Use the saw to cut down a tree and fashion

your own lumber
 Build your own ladder
 Build the treefort

Creating, Maintaining and Publishing APL Packages5

Building a Treefort the APL way

 Dig in the ground for iron ore
 Smelt the ore to fashion your own hammer,

nails and saw
 Use the saw to cut down a tree and fashion

your own lumber
 Build your own ladder
 Build the treefort

How many of us have written (at least) one set of utilities to
• manipulate character data (delete_blanks, center, etc)?
• work with dates (daysdiff, day_of_week, etc)?
• manage data on file (openfile, exists, etc)?

Creating, Maintaining and Publishing APL Packages6

Building a Treefort the APL way

 Dig in the ground for iron ore
 Smelt the ore to fashion your own hammer,

nails and saw
 Use the saw to cut down a tree and fashion

your own lumber
 Build your own ladder
 Build the treefort

How many of us have written (at least) one set of utilities to
• manipulate character data (delete_blanks, center, etc)?
• work with dates (daysdiff, day_of_week, etc)?
• manage data on file (openfile, exists, etc)?

WHY?

Creating, Maintaining and Publishing APL Packages7

Packages on PyPI (2021)

Creating, Maintaining and Publishing APL Packages8

Packages on PyPI (2022)

Creating, Maintaining and Publishing APL Packages9

 A software component that functions as a single entity to accomplish a task or a group of related
tasks.

 Generally used as a unit within a larger application context.

 In APL, it could be a namespace, class, function, or a collection of them, plus non-APL assets (HTML
files, shared libraries, etc)

 Candidates include Jarvis, HttpCommand, subsets of dfns workspace, Dyalog Cryptographic
Library, and others in the pipeline

 A package may have dependencies on other packages.

What is a Package?

Creating, Maintaining and Publishing APL Packages10

 Reduced duplication of effort.

 Leverage the work of others

 Expectation from APL newcomers who have experience in other environments.

Why are packages important?

Creating, Maintaining and Publishing APL Packages11

 A package may depend on zero or more other packages which may in turn depend on zero or more
packages (which may in turn depend…)

 For instance

 The package FilesAndDirs depends on the package

 APLTreeUtils which depends on the package

 OS which has no dependencies

 What should be done if a package is a dependency of more than one other package?

 For instance

 Many of the APLTree packages have a dependency on APLTreeUtils

Package Dependencies

Creating, Maintaining and Publishing APL Packages12

 In short semantic versioning is a means to consistently reflect the type of change to a package from
one version to another.

 At a minimum semantic versioning consists of

 A major version number, a minor version number, a build (or patch) number

2.11.23 – 2 is the major version, 11 is the minor version, and 23 is the patch number

Semantic Versioning

Creating, Maintaining and Publishing APL Packages13

 The build number is increased whenever a change that does not add feature or change existing
behavior is made.

 Bug fixes, Code refactoring, fix a typo in a comment

 Users can safely upgrade to a newer build number

 The minor version number is increased whenever there is feature added, but no previous behavior is
changed.

 Users can safely upgrade to a newer minor version number

 The major version is increased whenever there is a change in existing behavior.

 Different results for the same arguments

 Users should review the changes before upgrading to a newer major version number.

Semantic Versioning

Creating, Maintaining and Publishing APL Packages14

 Consider:

 You change a function in your package to accept an additional optional element in
the right argument.

 Is this a major or a minor version number change?

 Minor – because existing applications will continue to function the same way as before.

Semantic Versioning

Creating, Maintaining and Publishing APL Packages15

For creating packages, we'll make the following assumptions:

 Code in files
Your APL source code is stored in text files rather than in a workspace

 Optional but recommended: Source Code Management
Using a source code management system like git makes it easier to manage code revisions and
history.

Assumptions

Creating, Maintaining and Publishing APL Packages16

 Tatin – https://github.com/aplteam/Tatin
 The Tatin client allows you to incorporate APL packages and any dependencies they may have into your APL

application.

 Additionally, the client enables you to maintain and publish packages

 A Tatin server exposes and hosts a registry where packages may be imported from or published to

 You may run your own Tatin server, which exposes a or use the publicly available ones:

 Production server: https://tatin.dev

 Test server: https://test.tatin.dev

 Dado - https://github.com/the-carlisle-group/Dado/
 A framework for helping manage and deploy APL projects

 Centered around a GitHub-based workflow

Tools to Develop/Manage APL Packages

https://tatin.dev/
https://test.tatin.dev/
https://github.com/the-carlisle-group/Dado/

Creating, Maintaining and Publishing APL Packages17

 test.tatin.dev

 Install Tatin Client

 Tatin Tour

]loadpackages HttpCommand

]loadpackages FilesAndDirs

Exercise 1

Creating, Maintaining and Publishing APL Packages18

 The "official" Tatin registries may be found at:

 Production: https://tatin.dev for publishing "production-level" packages

 Test: https://test.tatin.dev – a sandbox to help you experiment with tatin and the creation/maintenance of
packages

 The registries are essentially identical in functionality with following exceptions:

 You must enroll with and receive an API key to use the production registry

 Deletion policy:

 Packages published to the production registry are never deleted.

 Packages published to the test registry may be deleted

 The test registry may occasionally be "reset"

Tatin Servers/Registries

https://tatin.dev/
https://test.tatin.dev/

Creating, Maintaining and Publishing APL Packages19

 Download the latest release from
https://github.com/aplteam/Tatin/releases

 Unzip the contents into your MyUCMDs folder

 Once installed, the Tatin client is exposed through a number of user commands
in the Tatin group.

Install the Tatin Client

https://github.com/aplteam/Tatin/releases

Creating, Maintaining and Publishing APL Packages20

 Like all user commands, the Tatin user commands begin with a right bracket]

 They are found in the Tatin user command group
]tatin -?

 Unambiguously named commands do not require the Tatin group name
]createpackage is unambiguous and does not need the group name

]version could be either]tatin.version or]tools.version so you must include the group
name.

 In addition to the documentation found on the Tatin registry sites, all Tatin user
commands have standard user command help information. For instance:
]createpackage -?

Tatin User Commands

Creating, Maintaining and Publishing APL Packages21

]ListRegistrieswill list all the defined Tatin registries

]ListRegistries
URI Alias Port Priority
----------------------- ---------- ---- --------
https://tatin.dev/ tatin 0 100
https://test.tatin.dev/ tatin-test 0 0

 A registry may be identified by its URI or an "alias"

Querying Tatin Registries

Creating, Maintaining and Publishing APL Packages22

]ListPackages will list all the defined packages for a Tatin registry

]ListPackages [tatin]
Registry: https://tatin.dev
Group & Name ∑ major versions
------------ ----------------
aplteam-APLGit 1
aplteam-APLProcess 1
.
.
.
davin-DateTime 1
davin-FilePlus 1
.
.
.
dyalog-HttpCommand 1
dyalog-Jarvis 1

Querying Tatin Packages

Creating, Maintaining and Publishing APL Packages23

 First, write the code for the components of your package. ☺
This could be as simple as a single function or it might consist of several
namespaces, classes, external resources, etc.

 Organize your components into a folder structure or .zip file

 Specify the package configuration

 Specify any dependencies on other packages

 Publish your package

Creating and Publishing a Package

Creating, Maintaining and Publishing APL Packages24

 Define the package configuration file (apl-package.json) in the folder for the
package:

]PackageConfig foldername –edit

 This file may also be created/edited using the editor of your choosing

Specify the package configuration

Creating, Maintaining and Publishing APL Packages25

 Define the dependencies file (apl-dependencies.txt) in the folder for the
package:

]PackageDependencies foldername –edit

 This file may also be created/edited using the editor of your choosing

Specify any dependencies on other packages

Creating, Maintaining and Publishing APL Packages26

 To publish your package on a Tatin registry use:

]PublishPackage foldername registry

 registry is the URI or alias for the registry.

Publish your package

Creating, Maintaining and Publishing APL Packages27

 Maintaining your package is simply a matter of publishing a new version

 Be sure to increment your package version number, preferably using semantic versioning
guidelines

Package Maintenance

Creating, Maintaining and Publishing APL Packages28

About

 Show picture of a dado structure

Figure 1

Creating, Maintaining and Publishing APL Packages29

Definitions

Project

0.0.2Package

Application

Creating, Maintaining and Publishing APL Packages30

DadoFlow

 What DadoFlow tries to avoid

Figure 2

Creating, Maintaining and Publishing APL Packages31

DadoFlow

 What DadoFlow tries to avoid

Creating, Maintaining and Publishing APL Packages32

Linear History

master

feature

Creating, Maintaining and Publishing APL Packages33

Linear History

master

feature

Creating, Maintaining and Publishing APL Packages34

Linear History

master

Creating, Maintaining and Publishing APL Packages35

Not a workflow for everyone

 Not the best choice if you:
 Need to concurrently develop parallel

branches (v2 and v3)

 Are constantly requiring patches to old
versions

Creating, Maintaining and Publishing APL Packages36

 Better integration between Dado and Tatin

 Seed Tatin with more APL libraries

Next Steps

