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 Session 1

 Why and What

 APL Packages

 Exercise 1 – Introduction to Tatin

 Session 2

 More Tatin

 Exercise 2 – create a package with dependencies

 Session 3

 Recommended Practices

 Workflow

Agenda
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 Introductions
 Goals for this Workshop

 Understand what a package is in general and in an APL context

 Learn a bit about Tatin – an APL package manager

 Build and publish a package with dependencies

 Understand recommended practices

 Learn a bit about workflow and Dado

 Leave energized and invigorated to create and publish your own packages 

Introductions and Goals
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Building a Treefort

 Buy a hammer, or better yet, borrow one

 Buy some standard dimensional lumber

 Buy some standard fasteners (nails, etc)

 Buy or borrow a ladder

 Build the treefort
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Building a Treefort the APL way

 Dig in the ground for iron ore
 Smelt the ore to fashion your own hammer, 

nails and saw
 Use the saw to cut down a tree and fashion 

your own lumber
 Build your own ladder
 Build the treefort
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Building a Treefort the APL way

 Dig in the ground for iron ore
 Smelt the ore to fashion your own hammer, 

nails and saw
 Use the saw to cut down a tree and fashion 

your own lumber
 Build your own ladder
 Build the treefort

How many of us have written (at least) one set of utilities to 
• manipulate character data (delete_blanks, center, etc)?
• work with dates (daysdiff, day_of_week, etc)?
• manage data on file (openfile, exists, etc)?
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Building a Treefort the APL way

 Dig in the ground for iron ore
 Smelt the ore to fashion your own hammer, 

nails and saw
 Use the saw to cut down a tree and fashion 

your own lumber
 Build your own ladder
 Build the treefort

How many of us have written (at least) one set of utilities to 
• manipulate character data (delete_blanks, center, etc)?
• work with dates (daysdiff, day_of_week, etc)?
• manage data on file (openfile, exists, etc)?

WHY?
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Packages on PyPI (2021)
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Packages on PyPI (2022)



Creating, Maintaining and Publishing APL Packages9

 A software component that functions as a single entity to accomplish a task or a group of related 
tasks.

 Generally used as a unit within a larger application context.

 In APL, it could be a namespace, class, function, or a collection of them, plus non-APL assets (HTML 
files, shared libraries, etc)

 Candidates include Jarvis, HttpCommand, subsets of dfns workspace, Dyalog Cryptographic 
Library, and others in the pipeline  

 A package may have dependencies on other packages.

What is a Package?
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 Reduced duplication of effort.

 Leverage the work of others

 Expectation from APL newcomers who have experience in other environments.

Why are packages important?
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 A package may depend on zero or more other packages which may in turn depend on zero or more 
packages (which may in turn depend…)

 For instance

 The package FilesAndDirs depends on the package

 APLTreeUtils which depends on the package

 OS which has no dependencies

 What should be done if a package is a dependency of more than one other package?

 For instance

 Many of the APLTree packages have a dependency on APLTreeUtils

Package Dependencies
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 In short semantic versioning is a means to consistently reflect the type of change to a package from 
one version to another.

 At a minimum semantic versioning consists of

 A major version number, a minor version number, a build (or patch) number

2.11.23 – 2 is the major version, 11 is the minor version, and 23 is the patch number

Semantic Versioning
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 The build number is increased whenever a change that does not add feature or change existing 
behavior is made.

 Bug fixes, Code refactoring, fix a typo in a comment

 Users can safely upgrade to a newer build number

 The minor version number is increased whenever there is feature added, but no previous behavior is 
changed.

 Users can safely upgrade to a newer minor version number

 The major version is increased whenever there is a change in existing behavior.

 Different results for the same arguments

 Users should review the changes before upgrading to a newer major version number.

Semantic Versioning
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 Consider:

 You change a function in your package to accept an additional optional element in 
the right argument.

 Is this a major or a minor version number change?

 Minor – because existing applications will continue to function the same way as before.

Semantic Versioning
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For creating packages, we'll make the following assumptions:

 Code in files
Your APL source code is stored in text files rather than in a workspace

 Optional but recommended: Source Code Management
Using a source code management system like git makes it easier to manage code revisions and 
history.

Assumptions
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 Tatin – https://github.com/aplteam/Tatin
 The Tatin client allows you to incorporate APL packages and any dependencies they may have into your APL 

application.

 Additionally, the client enables you to maintain and publish packages

 A Tatin server exposes and hosts a registry where packages may be imported from or published to

 You may run your own Tatin server, which exposes a  or use the publicly available ones:

 Production server: https://tatin.dev

 Test server: https://test.tatin.dev

 Dado - https://github.com/the-carlisle-group/Dado/
 A framework for helping manage and deploy APL projects

 Centered around a GitHub-based workflow

Tools to Develop/Manage APL Packages

https://tatin.dev/
https://test.tatin.dev/
https://github.com/the-carlisle-group/Dado/
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 test.tatin.dev

 Install Tatin Client

 Tatin Tour

 ]loadpackages HttpCommand

 ]loadpackages FilesAndDirs

Exercise 1
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 The "official" Tatin registries may be found at:

 Production: https://tatin.dev for publishing "production-level" packages

 Test: https://test.tatin.dev – a sandbox to help you experiment with tatin and the creation/maintenance of 
packages

 The registries are essentially identical in functionality with following exceptions:

 You must enroll with and receive an API key to use the production registry

 Deletion policy:

 Packages published to the production registry are never deleted.

 Packages published to the test registry may be deleted

 The test registry may occasionally be "reset"

Tatin Servers/Registries

https://tatin.dev/
https://test.tatin.dev/
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 Download the latest release from
https://github.com/aplteam/Tatin/releases

 Unzip the contents into your MyUCMDs folder

 Once installed, the Tatin client is exposed through a number of user commands 
in the Tatin group.

Install the Tatin Client

https://github.com/aplteam/Tatin/releases


Creating, Maintaining and Publishing APL Packages20

 Like all user commands, the Tatin user commands begin with a right bracket ]

 They are found in the Tatin user command group
]tatin -?

 Unambiguously named commands do not require the Tatin group name
 ]createpackage is unambiguous and does not need the group name

 ]version could be either ]tatin.version or ]tools.version so you must include the group 
name.

 In addition to the documentation found on the Tatin registry sites, all Tatin user 
commands have standard user command help information.  For instance:
 ]createpackage -?

Tatin User Commands
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 ]ListRegistrieswill list all the defined Tatin registries

]ListRegistries
URI                      Alias       Port  Priority  
----------------------- ---------- ---- --------
https://tatin.dev/       tatin          0       100 
https://test.tatin.dev/  tatin-test     0         0 

 A registry may be identified by its URI or an "alias"

Querying Tatin Registries
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 ]ListPackages will list all the defined packages for a Tatin registry

]ListPackages [tatin]
Registry: https://tatin.dev                   
Group & Name                 ∑ major versions 
------------ ----------------
aplteam-APLGit                              1 
aplteam-APLProcess                          1 
.
.
.
davin-DateTime                              1 
davin-FilePlus                              1
.
.
.
dyalog-HttpCommand                          1 
dyalog-Jarvis                               1 

Querying Tatin Packages
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 First, write the code for the components of your package.  ☺
This could be as simple as a single function or it might consist of several 
namespaces, classes, external resources, etc.

 Organize your components into a folder structure or .zip file

 Specify the package configuration

 Specify any dependencies on other packages

 Publish your package

Creating and Publishing a Package
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 Define the package configuration file (apl-package.json) in the folder for the 
package:

]PackageConfig foldername –edit

 This file may also be created/edited using the editor of your choosing

Specify the package configuration
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 Define the dependencies file (apl-dependencies.txt) in the folder for the 
package:

]PackageDependencies foldername –edit

 This file may also be created/edited using the editor of your choosing

Specify any dependencies on other packages
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 To publish your package on a Tatin registry use:

]PublishPackage foldername registry

 registry is the URI or alias for the registry.

Publish your package
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 Maintaining your package is simply a matter of publishing a new version

 Be sure to increment your package version number, preferably using semantic versioning 
guidelines

Package Maintenance
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About

 Show picture of a dado structure

Figure 1
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Definitions 

Project

0.0.2Package

Application
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DadoFlow

 What DadoFlow tries to avoid

Figure 2
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DadoFlow

 What DadoFlow tries to avoid
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Linear History

master

feature
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Linear History

master

feature
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Linear History

master



Creating, Maintaining and Publishing APL Packages35

Not a workflow for everyone

 Not the best choice if you:
 Need to concurrently develop parallel 

branches (v2 and v3)

 Are constantly requiring patches to old 
versions
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 Better integration between Dado and Tatin

 Seed Tatin with more APL libraries

Next Steps


