
Elsinore 2023

D08 - Using Packages

Morten Kromberg

D08 - Using Packages1

:If ~WorldDestroyed
ReadMail

:EndIf

ToDo List

D08 - Using Packages2

∇ r←WorldDestroyed
[1] r←HttpCommand.Get

'http://www.hasthelargehadroncolliderdestroyedtheworldyet.com/atom.xml'
[2] r←⎕XML r.Data
[3] r←'NOPE.'≢⊃r[r[;1 2]⍳2 'content';3]

∇

Is the World Destroyed?

D08 - Using Packages3

∇ r←ReadMail;server;user;pass;etc;etc;z

[1…7] ⍝ Set up user id, passwords, server address, etc etc

[8] client←⎕NEW MailKit.Net.Pop3.Pop3Client

[9] starttls←MailKit.Security.SecureSocketOptions.StartTls

[10] client.Connect server 110 starttls ct

[11] client.Authenticate user pass ct

[12] 'You have ',(⍕n←client.Count),' message(s)'

[13] …more stuff…

Read Mail

D08 - Using Packages4

∇ r←ReadMail;server;user;pass;etc;etc;z

[1…7]

[8] client←⎕NEW MailKit.Net.Pop3.Pop3Client

[9] starttls←MailKit.Security.SecureSocketOptions.StartTls

[10] client.Connect server 110 starttls ct

[11] client.Authenticate user pass ct

[12] 'You have ',(⍕n←client.Count),' message(s)'

[13] …more stuff…

Dependencies

∇ r←WorldDestroyed
[1] r←HttpCommand.Get

'http://www.hasthelargehadroncollider
destroyedtheworldyet.com/atom.xml'

[2] r←⎕XML r.Data
[3] r←'NOPE.'≢⊃r[r[;1 2]⍳2 'content';3]

∇

HttpCommand
APL Package from Tatin

MailKit
C# Package
from NuGet

D08 - Using Packages5

Demo – Run It

D08 - Using Packages6

Then There was Link (and git/svn etc)

Source Code
in Text Files

APL
Workspace

Link

Source
HistorySource

HistorySource
History

D08 - Using Packages7

 Load other code that we depend on
 Run some code on opening the project
 Run a build function
 Decide where to load the code
 Run tests
 Set Link options to be used when loading the

source code
 Set ⎕IO, ⎕ML

Next Step: Cider!

D08 - Using Packages8

A Cider Project

D08 - Using Packages9

So… What is a Package?

(From Longman Dictionary of Contemporary English)

D08 - Using Packages10

A Project is…
Source Code +
 Dependencies (packages)

loaded from a package
manager

 Environment configuration
 Development tools and

processes
 Can be opened and "set up" by

a Project Manager (Cider)

A Package is…
A "build" of a project...
 In a standard format
 Can be found, downloaded

and installed by a
"Package Manager"

 Cider supports the
development of Tatin
Packages

 Cider can load Tatin + NuGet
Packages

D08 - Using Packages11

Tatin
Package manager for Dyalog APL
A tasty way to package APLs
48 Packages

NuGet
Package manager for .NET
Related to "Chocolatey"
361,905 374,297 Packages

]z←tatin.listPackages
 {⍺,≢⍵}⌸{(¯1+⍵⍳'-')↑⍵}¨3↓z[;1]
 aplteam 42
 davin 4
 dyalog 2

¯2↑z
 dyalog-HttpCommand 1
 dyalog-Jarvis 1

D08 - Using Packages12

Finding Packages – www.tatin.dev

D08 - Using Packages13

Finding Packages

D08 - Using Packages14

Finding Packages

48 packages is enough to (sometimes) make it difficult
to decide which one to use (and "dyalog-APLProcess" is yet to come ☺)

D08 - Using Packages15

D08 - Using Packages16

D08 - Using Packages17

]tatin.listtags
 tags from https://tatin.dev

 apl-git-interface
 build
 calculations
 chm
 code-browsing
 code-coverage
 code-reviews
 command-generation
 communication-tools
 comparison-tool
 comparison-utilities
 components
 config-files
 converter
 copy
 cryptography
 date
 dates
 …
 …
utilities
validation
webservice
windows-event-log
windows-registry
winscp-interface
write
yes-or-no
zip-tools

]Tatin.ListPackages -group=dyalog
Registry: https://tatin.dev
Group & Name # major versions
------------ ----------------
dyalog-HttpCommand 1
dyalog-Jarvis 1

]Tatin.ListPackages -tag=crypto
Registry: https://tatin.dev
Group & Name # major versions
------------ ----------------
aplteam-HashPasswords 1

]Tatin.ListPackages

D08 - Using Packages18

 Example: I use HttpCommand in just about every new project
 To add it to our Cider project:

]Cider.AddTatinDependencies HttpCommand
1 Tatin dependency added:

dyalog-HttpCommand-5.2.0

 Since we did not specify a version, we get the latest.
 A reference is created to the loaded package within our project space:

D08.HttpCommand.Get 'www.dyalog.com'
[rc: 0 | msg: | HTTP Status: 200 "OK" | ≢Data: 22580]

Adding a Tatin Dependency

D08 - Using Packages19

 NuGet is the .NET
package manager

 You can use NuGet packages
from Dyalog APL,
with .NET 6.0 or later

NuGet

D08 - Using Packages20

 .NET has been around for 20+ years. The old "Framework" is being replaced
by an open source, cross-platform .NET, initially known as ".NET Core".

 Dyalog v18.0 added a bridge to .NET Core 3, to complement the 20 year old
bridge to the .NET Framework.

 v18.2 was tested with "Core" 3.1 but works with 5.0 and later
 v19.0 will target 8.0 (Long Term Support version due on Nov 8th 2023)

[Microsoft].NET History

Name Platforms Version Numbers

Microsoft.NET Framework Windows 1 2 3 4.0 4.8.1

".NET Core" Windows Linux macOS 1 2 3

".NET" Windows Linux macOS 5.0 6.0 7.0 8.0

D08 - Using Packages21

Finding NuGet Packages (HARD!!!)

D08 - Using Packages22

NuGet support
currently requires .NET
6.0, 7.0 or 8.0

Support for
"Framework" packages
MAY follow

 Example: NuGet contains a very simple package called "Clock".

 We can add it to our Cider project (by default, we get the latest version):

]Cider.AddNuGetDependencies Clock
Clock 1.0.3

 A reference to a namespace hosting the .NET package is created:

#.clockproj.Clock.UtcNow.(Hour Minute)
14 43

 In fact, the namespace is empty except for ⎕USING:

clockproj.Clock.⎕USING
,c:/tmp/clockproj/nuget-packages/published/Clock.dll

Adding a NuGet Package

D08 - Using Packages23

Demo – Build It

D08 - Using Packages24

Dependencies of Dependencies
Great fleas have little fleas upon their backs to bite 'em,

And little fleas have lesser fleas, and so ad infinitum.

Augustus de Morgan

Both Tatin and NuGet will
automatically load such
dependencies

https://en.wikipedia.org/wiki/Ad_infinitum

D08 - Using Packages25

"Principal" dependencies (that we added)

D08 - Using Packages26

"Lesser" fleas

D08 - Using Packages27

"Principal" dependencies (that we added)

D08 - Using Packages28

]Cider.OpenProject C:\tmp\fleatest
Project successfully loaded and established in "#.fleatest"

)cs fleatest
#.fleatest

⎕NL -9
CiderConfig CompareFiles ZipArchive

CompareFiles
#._tatin.aplteam_CompareFiles_4_0_1.API

⍪#._tatin.⎕nl -9
aplteam_APLTreeUtils2_1_2_0
aplteam_CommTools_1_5_0
aplteam_CompareFiles_4_0_1
aplteam_DotNetZip_2_0_2
aplteam_FilesAndDirs_5_5_0
aplteam_OS_3_0_1
aplteam_ZipArchive_0_1_1

#._tatin.aplteam_CompareFiles_4_0_1.⎕NL -9
API APLTreeUtils2 Admin CommTools ComparisonTools FilesAndDirs TatinVars

Where Do Dependencies Go?

Our Dependencies

Lesser Fleas

D08 - Using Packages29

 Under Windows, Linux and macOS, .NET provides a "dotnet"
command which:
 Creates .NET projects that we use to define and manage dependencies

(complete with a C# class that we never use)
 Adds Dependencies
 "Publishes" collections of DLLs that implement packages

 Dyalog's NuGet support depends heavily on this
 We just set ⎕USING to point to the published DLLs
 The alternative is to try to replicate poorly documented .NET behaviours

dotnet command-line tool

D08 - Using Packages30

 NuGet DLL's go in a folder called "published"

NuGet Packages – Under the Covers

D08 - Using Packages31

 The dotnet command line tool has created some C#
code which "pretends" to use the NuGet packages

NuGet Packages – Under the Covers

D08 - Using Packages32

Same Same but Different
Tatin NuGet

#.projectSpace.HttpCommand #.projectSpace.Clock

D08 - Using Packages33

The Cast, in order of appearance

Tatin is the APL Package Manager
A Package is a project wrapped up for consumption by others

Link Synchronises Source Files and Workspace
The workspace and source files are "Linked"

NuGet is the .NET Package Manager
The Dyalog.NET Bridge allows APL to use .NET libraries

Cider is a Project Manager
A Project is a linked source folder,
a config file, plus optional dependencies

D08 - Using Packages34

 Tatin development started in 2020 using the Acre project
management system

 We decided that we needed a "more agnostic" / "less opinionated"
project management system to base Tatin development upon

 Cider was born in 2021

 Initially as an internal tool for Tatin development

 Support for NuGet packages added in 2023

 Tatin is now close to v1.0, we think

 Cider still a prototype (v0.36)

 Cider is likely to evolve significantly in next year or two

 Cider is based on Link, which is now at v4.0

History

D08 - Using Packages35

 Review of Names & Messages
 Dyalog to help with Documentation

 Shell-callable API for installation

 Ability to manage Local / Intermediate
package stores within an organisation

 Import part of a package (e.g. dfns cmpx)?

 Actually running tests and builds for you

Cider and Tatin "To Do" lists

D08 - Using Packages36

Link v4.0 Highlights
 Configuration Files (incl "Global" config)
 Link single Class or Namespace file
 Create/Export/Import default to current

namespace if none supplied
 Support for character vectors, matrices

and vec-of-vecs in simple text files
 Link now being used by APL interpreter to

load user code at startup

Link 5 & 6
 Crawler which will periodically compare

workspace to source folders
 Postponed from 3.0 and 4.0

 And again from 4.0 to 5.0

 Create a proper API
 Likely to be 6.0, after the Crawler is done

Link Road Map

D08 - Using Packages37

In the interpreter itself…
 Ability launch the APL interpreter on a

Cider project and have it open & run
 Create virtual environments a la Python

 Isolate an APL environment including packages

 Possibly add an extension to ⎕USING that
allows easier references to loaded modules

Dyalog APL Road Map Items

D08 - Using Packages38

Dyalog:
Making APL more Enjoyable

Tatin Cider

D08 - Using Packages39

Dyalog:
Making APL more Enjoyable

	Default Section
	Slide 0: D08 - Using Packages
	Slide 1: ToDo List
	Slide 2: Is the World Destroyed?

	Untitled Section
	Slide 3: Read Mail
	Slide 4: Dependencies
	Slide 5: Demo – Run It
	Slide 6: Then There was Link (and git/svn etc)
	Slide 7: Next Step: Cider!
	Slide 8: A Cider Project
	Slide 9: So… What is a Package?
	Slide 10
	Slide 11
	Slide 12: Finding Packages – www.tatin.dev
	Slide 13: Finding Packages
	Slide 14: Finding Packages
	Slide 15
	Slide 16
	Slide 17:]Tatin.ListPackages
	Slide 18: Adding a Tatin Dependency
	Slide 19: NuGet
	Slide 20: [Microsoft].NET History
	Slide 21: Finding NuGet Packages (HARD!!!)
	Slide 22: Adding a NuGet Package
	Slide 23: Demo – Build It
	Slide 24: Dependencies of Dependencies
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Where Do Dependencies Go?
	Slide 29: dotnet command-line tool
	Slide 30: NuGet Packages – Under the Covers
	Slide 31: NuGet Packages – Under the Covers
	Slide 32: Same Same but Different
	Slide 33: The Cast, in order of appearance
	Slide 34: History
	Slide 35: Cider and Tatin "To Do" lists
	Slide 36: Link Road Map
	Slide 37: Dyalog APL Road Map Items
	Slide 38: Dyalog: Making APL more Enjoyable
	Slide 39: Dyalog: Making APL more Enjoyable

