
Converting a COM Server to
a Jarvis-based Web Service

Finn Flug - DPC

Agenda

• Overview of the system

• Migrating from APL+WIN to Dyalog-APL

• Converting to a Jarvis-based web service

• Deploying the web service as a Docker container

System Overview – Current State

• Application written in Visual Basic 6

• Windows Forms GUI

• Calculating engine written in APL+WIN

• Calculating engine is provided as a COM Server

• The Visual Basic app calls the APL as follows (translated to Dyalog):

WSengine←⎕NEW'OLEClient'(⊂'ClassName' 'APLW.WSEngine')
WSengine.SysCommand⊂'Load /path/to/workspace'
WSengine.Call1 'foo’ arg

Windows Forms GUI

System Overview – Current State

Database

VB App

APL+WIN

Windows Forms GUI

VB App

System Overview – Current State

All of this runs on the user's local machine

APL+WIN

Database

System Overview – Current State

• Why even change the current system?
• Support for Visual Basic 6 is running out

• Current architecture of the system does not fit into the infrastructure
of the customer

• The goal is:
• Move to a browser-based solution

• Replace the outdated components

Web Browser

Web App Backend

Database

System Overview – Goal State

APL Web

Service

Web App Frontend

Web Browser

Web App Backend

Database

System Overview – Goal State

APL Web

Service

Web App Frontend

Container Platform

Network based

Roadmap

1. Migrate from APL+WIN to Dyalog

2. Convert the calculating engine to a Jarvis-based web service

3. Run it inside a Docker container

Migrating from APL+WIN to Dyalog

• Consider things like Replicate Each:
1 0/¨(1 2)(3 4) ⍝ Dyalog

1 2
1 0/¨(1 2)(3 4) ⍝ APL+WIN

1 3

• Replace system functions and system variables

• In APL+WIN, all left arguments are optional

• …

Converting to a Jarvis-based Web Service

• Deciding on a paradigm:
• Jarvis supports two paradigms, JSON and REST

• We chose the JSON-paradigm because:

• It is suitable for functional endpoints

• It is easier to implement

• Important question: Is the application stateless?
• Luckily, the application at hand is!

Converting to a Jarvis-based Web Service

• Modifying the existing APL-code:
• Endpoints are result-returning, monadic or dyadic APL-functions

• Right argument is the request payload

• (Optional) left argument is the request object itself

• Jarvis handles the conversion between JSON and APL data structures
(using ⎕JSON)
• One might have to change the structure of the arguments

• The APL+WIN application takes strings with parameters separated by
semicolons as argument (e.g., 'Finn;1234;5.678')

• No changes were required (although this is probably a suboptimal solution)

Converting to a Jarvis-based Web Service

• Error handling
• Jarvis (with configuration Jarvis.Debug←0) traps all errors and

reports them with HTTP response status 500 (internal server error)
• Use ⎕DMX since it has thread-scope

• We had to expand around the existing error handling
⎕TRAP←(500 'C' '→OldErrorhandler') ⍝ old error handling
⎕TRAP,←⊂(0 'E' '#.Errorhandling.WriteInfoAndResignal') ⍝ new error handling

Converting to a Jarvis-based Web Service

• Logging
• We log to stdout.
• Since we want to run the app inside a container, this allows reporting

tools to access the logs

Converting to a Jarvis-based Web Service

• Configuration
• Configuration parameters can be specified in a JSON-file

• We use a configuration similar to the following:

{

AppCloseFn: "myAppCloseFn", // called when Jarvis starts

AppInitFn: "myAppInitFn", // called when Jarvis stops

CodeLocation: "./APLSource", // by default, all functions in CodeLocation and below are exposed as endpoints

ExcludeFns: “Errorhandling.*", // not exposing these functions as endpoints

Port: 8000, // port Jarvis is to list on

}

Converting to a Jarvis-based Web Service

At this point, we can run our application as a Jarvis-based web service

…at least on localhost

Jarvis.Run '/path/to/config.json'

Creating a Custom Docker Image

• Dyalog provides public Docker images for experimentation only.
• These are not meant to be used in production.

• We used the Dockerfile for the dyalog/jarvis public image as a
starting point for our custom image
• Key differences are:

• the base image
• loading of dependencies
• some added configuration

• Components of the custom image:
• Base image
• Interpreter
• Jarvis
• Source code (stored as text files)

Creating a Custom Docker Image

FROM redhat/ubi8-minimal:8.8

ADD APLSource /app
ADD linux_64_18.2.45405_unicode.x86_64.rpm /dyalog.rpm
RUN git clone https://github.com/dyalog/Jarvis /Jarvis

ENV JarvisConfig="/app/Config.json“
ENV LOAD="/Jarvis/Source“

ENTRYPOINT dyalog

• Simplified version of our custom Dockerfile

Creating a Custom Docker Image

FROM redhat/ubi8-minimal:8.8

ADD APLSource /app
ADD linux_64_18.2.45405_unicode.x86_64.rpm /dyalog.rpm
RUN git clone https://github.com/dyalog/Jarvis /Jarvis

ENV JarvisConfig="/app/Config.json“
ENV LOAD="/Jarvis/Source“

ENTRYPOINT dyalogExecutable which runs at startup

Base Image

Add all components
(specify a version!)

Specify environment variables

• Simplified version of our custom Dockerfile

Image Registry

Build & Deploy

Git Repository Build Pipeline Promote Pipeline
Container
Platform

Jarvis source
code

Source code
Jarvis config
Dockerfile

Interpreter

+

What Else?

• Security

• Testing

• Updating the components of the image

• …

Summary

• Until now, everything runs without issues

• App is yet to go into production, but test results are promising

• Conversion process went smoothly

	Slide 1: Converting a COM Server to a Jarvis-based Web Service Finn Flug - DPC
	Slide 2: Agenda
	Slide 3: System Overview – Current State
	Slide 4: System Overview – Current State
	Slide 5: System Overview – Current State
	Slide 6: System Overview – Current State
	Slide 7: System Overview – Goal State
	Slide 8: System Overview – Goal State
	Slide 9: Roadmap
	Slide 10: Migrating from APL+WIN to Dyalog
	Slide 11: Converting to a Jarvis-based Web Service
	Slide 12: Converting to a Jarvis-based Web Service
	Slide 13: Converting to a Jarvis-based Web Service
	Slide 14: Converting to a Jarvis-based Web Service
	Slide 15: Converting to a Jarvis-based Web Service
	Slide 16: Converting to a Jarvis-based Web Service
	Slide 17: Creating a Custom Docker Image
	Slide 18: Creating a Custom Docker Image
	Slide 19: Creating a Custom Docker Image
	Slide 20: Build & Deploy
	Slide 21: What Else?
	Slide 22: Summary

