
ONCE UPON A FILE
FUNNY STORIES ABOUT FRUSTRATING EXPERIENCES WITH 
FILES AND PEOPLE



Leading provider of integrated investment management 
solutions for the Italian insurance market since 1983

More than 50 institutional investors

At the beginning: Italian clients
(using Italian as official language)

Now: international clients mostly located in Europe
(using English as official language)



When working with software is pretty much impossible not to have to deal 
with:

• imports, to get data into your application

• exports, to send data to users or other applications in the outside world

They can sometimes fail and this leads to frustrating experiences…

… that can become funny anecdotes after they are solved! 

All examples in this presentation are based on true stories 



3 types of interaction

• Software vs software with human check 

• Software vs human

• Software vs software



The types of problems that can occur are also influenced by 

• File format

• File encoding

• Ambiguity of some fields (e.g. dates)



What can happen when the interaction goes wrong? 

• Best-case scenario: system error (at least we know we have a problem) 

• Not-so-good-case scenario: the import/export works, but the data is 
spoilt!

In any case, we have to understand where the problem originates and fix it, if it 
comes from the application, or collaborate with the user, if it comes from the file 



Most used import/export formats in Sofia

• Text file with fixed width in ANSI encoding

• Text file with fixed width and delimiter in ANSI encoding

• CSV

• XML

• Excel



A common issue with plain text files 

It’s important to know whether the file was produced by Windows or 

Linux/Unix or Mac OS to determine the end of line char (\r\n, \n or \r)

In theory, this information is valid forever, 
as long as you are using the same file from 

the same source…



But then…

A user opens the file in a different OS and saves it: the end of line char 

changes and suddenly the import doesn’t work anymore

 

Possible solutions:

 
Ask the user to import the original file

If they need to modify the original file, they can do it in the 

original OS

If they can’t use the original OS, some text editors allow to 

choose the end of line char   

 



Fixed width

Easy to read for a machine!

Managing the fixed width format requires having a list of field widths 
describing the file 

There are a lot of useless blanks 



User readibility

Editing is difficult: wrong width/wrong data

Import crashes or, even worse, data is wrong!



When dealing with ANSI file with fixed widths:

• The number of bytes in one line is known beforehand

In Sofia, the fixed width text file comes with ANSI encoding

One char is one byte!

• It is easy to read big files in chunks parsing always complete lines

• It is easy to identify a certain field in a certain record, just calculate the offset 

bytes!



ANSI encoding had been enough as long as we had only 

Italian customers using Italian language

Therefore, we enjoyed the benefit of a 1 byte = 

1 char encoding for a while 



Fixed width with delimiter 

• It is a mix of fixed width and CSV file

• Easier to read for the user, while a program can process it either as a CSV or 
as a fixed width file

• It has extra blank spaces (so the file is bigger than a CSV) and it doesn’t 
support the delimiter as a character inside a field (as a CSV does)



Easy to check!

Editing still requires attention, but the delimiter helps

Even with «difficult» data



CSV

It gets rid of useless spaces

It allows to quote fields, so that the delimiter can be used as a 
character inside other fields



«Quotation marks» or not «Quotation marks»

An option in all other situations 
involving text fields

In our experience, it is not always easy to make 
a user understand how or when use them

Mandatory if the field includes the 
text qualifier or the delimiter



This is the information we want to get from a CSV file

In this example, the semicolon is the delimiter 
and the double quote the text qualifier



Solution: «Just add quotation marks!»

The quoted 
lines are just 
one big field 

now!

Solution: «Just add quotation marks at the beginning and at 
the end of the fields that need them!»

Second line 
has one field 

too many, 
third line has 

an invalid field 
format



This is a good file



Sometimes we need to interact with programs that not fully support 
the CSV format. 

In some cases, the program couldn’t manage the fact that some 
records had a quoted field, and some didn’t

Possible solutions: 
Add quotation marks to all text fields, even when it 

is not needed
Remove text qualifier and delimiter from text fields

Even exports can bring some surprises



By default, on Windows, CSV files are opened using Excel

This can stir up some confusion between CSV files and Excel files

Are CSV files easy to read and edit for the users?

The results are amazing…



Putting «csv» as extension of an Excel file doesn’t do the trick: this is not a CSV file!!!

It seems a CSV file when 
opened with Excel, though



An even worse example



The user opens the CSV file with Excel to check or amend it, and then saves it. The 
data format of the fields may change ( dates, decimal separator…). 

Possible solutions: 

Ask the user to open the file with a text editor

Change the file extension to something else (e.g. txt), so that 

Windows won’t try to open it with Excel

The import crashes or the imported data is wrong!



This is a CSV file

At any rate, it 
isn’t easy to 
read it with a 
text editor!



UTF-8

1 char is not always 1 byte (multibyte encoding)

Reading files in chunks has become more difficult

Bite Order Mark (BOM)

It is more work for us, but non-ANSI characters do exist

BOM  can even help us in some cases



A tale of two encodings

Customized ANSI export for 
an archive, had to be 
updated to UTF-8 for 
special characters support

Sofia must be able to read
both old and new files, but 
we didn’t want to convert all 
old files

From ⎕NREAD to  ⎕NGET

New files are UTF-8 with BOM: when 
⎕NGET detects BOM, it uses the 
BOM encoding even if the encoding is 
provided in the left argument

⎕NGET is used with the encoding 
for old files

Thanks ⎕NGET + BOM!

The task: The execution:



XML

Really easy to manage thanks to ⎕XML

Extensively used for web application

Typically, all information is stored in the file, so that in can be used 
by more applications for different purpuses

Tags and hierarchy should improve user readibility



Reading file in chunks is possible but requires some tricks

But

To exchange the same data you need bigger files 
(also compared to fixed width files)



User readibility

This is neat!

This is somewhat more 
challenging



Why does this happen?

By design: XML requires to open and close the tag, 
while for csv you simply need the delimiter

Not tailored export: all available information is included in the file, so 
that it can satisfy all possible present and future needs 



When the extension of the XML file is txt, the file is automatically 
opened with Notepad



Excel

The preferred solution when users directly create the file: human to  software
interaction

Field with general format are converted (if possible) when opening/reading the file

Every field can have a specific format (dates, strings, numbers)



Beware strings of numbers (e.g. C/A numbers are treated as strings, and they 
often begin with a series of 0)



All that glitters is not gold

The content of Excel fields depend on regional settings of the Windows 
session it has been run on

E.g. if date fields are 
not in date format, 
they are convert to 
dates only if the 
format is the same of 
local settings



19/10/23 that on an Italian server is read as October 19th 2023 but on an English (United 

States) server is only a string

Dates are always something to manage carefully

A little digression



5/4/23

April 5th,2023 May the force!!!



Using Excel to read and write Excel files

Imports and exports crash if Excel has problems, e.g. already in use on the server or 
not properly installed/authorized

Different versions of Excel can cause exports to be blocked 

Solution: close all pending Excel session and/or fix 
installation/authorization  (unfortunately there isn’t something else to 
do)

Solution: create new file or save a copy with the newer version



In the last years we are using a DLL to read Excel files, so there is no longer the need 
to have Excel installed for imports

But another issue popped up:
• the things we want to read are formulas that need to be evaluated
• the values we want to import don’t really exist until Excel evaluate them
• we cannot import the numbers we need

Solution: fortunately, there was a method in DLL to evaluate formulas 
before reading values. 



Patience

Collaboration

Patience

Curiosity 

So, how to deal when things with files go wrong?


	Diapositiva 1: ONCE UPON A FILE
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7: Most used import/export formats in Sofia
	Diapositiva 8
	Diapositiva 9: But then…  A user opens the file in a different OS and saves it: the end of line char changes and suddenly the import doesn’t work anymore  
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26: This is a CSV file
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41

