Climbing Trees & Catching Bugs

Asher Harvey-Smith
(senior) Intern at Dyalog this summer

Computer Science student at the University of
Warwick

Climbing Trees Catching Bugs

Climbing Trees

g

00122106 171717020

the journal of the British APL Association

Kenneth E. Iverson
1920-2004

][Search the index} |[Google the archive | Current Issue

Vol.26 No.4
home archive/24/4 @

advarise NO STINKING LOOPS
'"’h"r"e . Articles in press
character- . - i Full index
o ntl Treetable: a case-study in q Eil i
contribute Stevan Apter Volumes
in press P 26
team 25
subscribe 24
about us 23
blog This article is the first in an occasional column, No Stinking Loops. Stevan 22
books Apter is one of the programmers Jeffry Borror referred to as “the q gods” in 21
community his textbook q for Mortals. The world of q programming has so far been 20
commitice largely hidden behind corporate non-disclosure contracts. Vector is glad to 19
g it opening and proud to be publishing this. Ed -
events e Rp 8 p p 8 e 17
sponsors 16
contact 0.1 ducti 15
ant . Introduction 14
"'I':’ee:"'e‘ers A treetable is a table with four additional properties. :_2-
Vi £E
Firstly, the records of the table are related hierarchically. Thus, a record may have :—:)
one or more child-records, which may in turn have children. If a record has a parent, 9
PR RAS it has exactly one. A record without a parent is called a root record. A record 8
without any children is called a leaf record. A record with children is called a node e
6
© 1984-2024 record. =
British APL Association 5
Al rights reserved. e g . y ’ 4
Secondly, it is possible to drill down into a treetable. If a record is a parent, then 3
Archive articles posted onlineon some of its columns may be rollups of its child-records. By drilling down into a 2
request: ask the archivist. 1

parent-record, it is possible to inspect the elements which are aggregated in the

parent. All rollups are performed on the leaves of the tree rather than on the
immediate children This meanc that free-canctrictinn ean he ‘lazv’ nat all

Getting Started with]
J code search
Main Page
NuVoc
Playground
Wiki Hints
Guides

System
Showcase
Library
Community
Recent changes
New Pages

Tools

What links here
Related changes
Special pages
Printable version
Permanent link
Page information
Cite this page

Page Discussion

Essays/Tree Display

< Essays

Contents [hide]

1 Tree Display

2 Examples

3 Program Logic
3.1 subtree
3.2 graft
3.3 connect
3.4 root
3.5 extend

Tree Display
Theverb tree pro

BOXC=: 9l:6 '’
EW =: {: BOXC

tree=: 3 : 0
assert. ($y) -
y=. ":8.>7: (32
assert. ((2 =
i=s =5 Gy
t=. (<EVW,' ')
c=. 11 J ey
while. +./ b=,
i= h#~ [~

Getting Started with |
J code search
Main Page
NuVoc
Playground
Wiki Hints
Guides

System
Showcase
Library
Community
Recent changes
New Pages

Tools

What links here
Related changes
User contributions
Logs

View user groups
Special pages
Printable version
Permanent link
Page information

User page Discussion

User:Devon McCormick/Trees

< User:Devon McCormick

Here's an exposition of one method for representing trees ir

Contents [hide]

1 Parent Index Vector

1.1 Basic Navigation

1.1.1 Grafting

1.2 Validity Checking

1.3 Grafting, Pruning, and Displaying
2 Using "Tree Display"
3 Code

Parent Index Vector

The tree is a vector of integers where each element is the inc

Say we have a directory tree like this:

Getting Started with |
J code search
Main Page
NuVoc
Playground
Wiki Hints
Guides

System
Showcase
Library
Community
Recent changes
New Pages

Tools

What links here
Related changes
User contributions
Logs

View user groups
Special pages
Printable version
Permanent link
Page information

User page Discussion

User:Doug Mennella/Trees

< User:Doug Mennella

Contents [hide]

1 Representing trees with vectors
2 Paths
3 Tree display

3.1 The code in full
4 Centering display

4.1 Centering labels

4.2 the code
5 Toolset

Representing trees with vectors

Trees are familiar data structures in programming and there are a number of ways to represent them ir
recursively descend the structure of the tree from some root node. But a tree is also a graph and as suc

For this graph we have the following list of edges.

T
cat
}_|—|
ab dog er
[

u hm cat
cat|ab

ab |u

cat|dog

dog| hm
1

We tunirallv cenarate the tree ctriictiire from the rarreenondina vertar aof nodec which in thic race are

:Namespace ¢ f«{(2=+#£0=Xo.|X)#X+1w} ¢ :EndNamespace

1. After lexing: 2. After parsing brackets:

ec0o0o0o0 oo

o
) 1L L .7 05 |
©00000000000000000 °
°

T
°

— T T

00000
e e

0000000000

1. After function specialization: 2. Complete AST:

https://asherbhs.github.io/apl-site/trees/intro.html

https://asherbhs.github.io/apl-site/trees/intro.html

Q search ctri 4 K

Exploring Things with Dyalog APL

Trees
Introduction
Representing Trees
Parent Vectors

Relating the Depth and Parent
Vectors

Forests
Deleting Nodes
Bottom-Up Accumulation

Working with 0JsoN

Combinatorics

Enumerative Combinatorics

n
o)
b

¥ Il

Introduction

APL is fantastic for working with linear data. If you can organise your data in an array, you have dozens of
primitives and years of collective wisdom to lead you to success. Sadly, in the wild, there are many problems
which have a fundamentally non-linear structure. These present an issue for the brave APL programmer, whose
array primitives struggle to cope.

One of the most common cases of this is dealing with hierarchical data, where pieces of data are variously
‘contained in' or ‘belonging to’ others. Data like this are examples of a general structure called a tree.

Formally, trees are made up of nodes. Each node may have some number of child nodes, and usually one
parent node. There is exactly one node in a tree which has no parent, this is the tree's root node. Nodes which
share a parent are sibling nodes, and nodes with no children are leaf nodes.

For many kinds of hierarchical data, we can model its structure as a tree:

Data Nodes Root node z is a child node of y
A file system Files and The root or home directory x is in folder y
folders
Jobs in a company Employees CEO T reports to y
Evolutionary tree of Species Some unknown early micro- x evolved from y
life organism
JSON Data The outermost object or array x is @ member of array or

object y

Interestingly, a family tree is not an example of this kind of tree, as each child typically does not have just one
unique parent.

We will generally draw trees with the root node at the top, and all child nodes arranged below, with a line
connecting each child to its parent. For instance, in the following tree, the node labelled a is the root node, and
is a parent of b, ¢ and d - its children.

— O &L 1 i Contents

Preliminary Definitions
t(c"'index:' 'depths:' 'data:'),”(i1#depths) depths data The Nested Representation

The Depth Vector Representation

The Path Matrix Representation
I index: (0|1]|2|3(4|5|6|7(8]|9 The Parent Vector Representation

=
[
~
~
-
~
w
w
w
—-

depths: Challenge

data: a|ble|f|c|g|h|i|i]|d

At this point it's helpful to make a small mental shift. We are drawing a one-to-one correspondence between
node and indices into these vectors, using the indices as unique identifiers. We will use this so frequently that
making the distinction explicit becomes tiring, so from now on, we will often refer to ‘the node associated with

'

index i 'simply as ‘node i .

Q search ctrt [+ K
Exploring Things with Dyalog APL

Trees .
Labelling each node of our tree with its corresponding index reveals an interesting pattern.

Introduction
Representing Trees
Parent Vectors

Relating the Depth and Parent
Vectors

Forests
Deleting Nodes
Bottom-Up Accumulation

Working with 0JsoN

Combinatorics

Enumerative Combinatorics v

Fig. 4 The same tree, with nodes labelled with their index into the depth and data vectors.

VSR O i Contents

I
£e)
b

Basic Operations

Inver“ ng Favourite Children (Ordering
Siblings)

| Inverting

siblings in a tree - in other words, mirroring the tree.
A I Pretty Printing
We will again reset our tree.

l ~p+parent

Because it doesn't really fit anywhere else in the tutorial, let's look at a neat way to reverse the order of all

Q search ctri 4 K 001221067770
Exploring Things with Dyalog APL On our example tree, inverting looks like this:
Trees

Introduction

Representing Trees
Parent Vectors

Relating the Depth and Parent
Vectors

Forests
Deleting Nodes
Bottom-Up Accumulation

Working with 0JsoN

Combinatorics

Enumerative Combinatorics v

Fig. 15 Mirroring the tree.

Our first step is to invert the parent vector is simply reverse it.

Exploring Things with Dyalog APL

Trees
Introduction
Representing Trees
Parent Vectors

Relating the Depth and Parent
Vectors

Forests
Deleting Nodes
Bottom-Up Accumulation

Working with 03son

Combinatorics

Enumerative Combinatorics

.‘.‘l
A|P|L
A | | 4

Q search ctri [+ K

= (w)

ke
ra
“d

Working with JJSON

We've laboriously gone through many different ways to work with parent vectors, but we're yet to do any ‘real
work’ with them. This page will cover an interesting application of the techniques we've learned so far. We're
going to look at manipulating JSSON-formatted data, making use of Dyalog APL's built-in [JJSON .

There's a wonderful little APl which returns some JSON describing every person currently in space.

Jload HttpCommand
json<(HttpCommand.Get 'http://api.open-notify.org/astros.json').Data
[OJSONOOPT 'Compact' OOJSON json A prettify it

#.HttpCommand

"message": "success",
"number": 12,
"people": [

{

“craft": "ISS",
“name”: "Oleg Kononenko"

Yerafths "ISSHS
“name”: "Nikolai Chub"

"ISS",
"Tracy Caldwell Dyson"

"Iss",
"Matthew Dominick"

"IsS",
: "Michael Barratt"

: "Iss",
: "Jeanette Epps"

"IsS",
: "Alexander Grebenkin"

{
"message": "success",
"number": 12,

"people": [
{
Yeraft™: SISS™)
"name": "Oleg Kononenko"
L.
{
ferafth: "ISSY;
"name": "Nikolai Chub"
)
{
Yeraft™: YISS)
"name": "Tracy Caldwell Dyson"
I
{
ferafth: "ISSY
"name": "Matthew Dominick"
)
{
Pcraft!: SISSY
"name": "Michael Barratt"
T
{
ferafth: "ISSY;
"name": "Jeanette Epps”
)
{
Yeraft™s IS5,
"name": "Alexander Grebenkin"
I
{
Yoeraft®: %ISSY;
"name": "Butch Wilmore"
)
{
Yeratt®:s “I55%
"name": "Sunita Williams"
)5
{
"craft": "Tiangong",
"name": "Li Guangsu"
)
{
"craft": “"Tiangong”,
"name": "Li Cong"
15
{
"craft": "Tiangong",
"name": "Ye Guangfu"
}

-°Icraft
name
*uIcraft
name
uIcraft
name
°Icraft
name
°Icraft
name
Fercraft
rpeople{ “name
utcraft
name
°Icraft
name
°Icraft
name
--Icraft
name
ulcraft
name
-°Icraft
name

Fnumber

‘message

T1angong{°

reTIss
leg Kononenko
oTISS
Nikolai Chub
oTISS
Tracy Caldwell Dyson

oTISS
IMatthev Dominick
oTISS
ichael Barratt

.IISS

Jeanette Epps
oTISS

Alexander Grebenkin
oTISS

Butch Wilmore
oTISS

Sunita Williams
°ITiangong

Li Guangsu
OITiangong

Li Cong
-ITiangong

Ye Guangfu

Fri2

“success

rOleg Kononenko
Nikolai Chub
Tracy Caldwell Dyson
Matthew Dominick
Michael Barratt
° Jeanette Epps
Alexander Grebenkin
Butch Wilmore
Sunita Williams

{L1 Guangsu
o

Li Cong
Ye Guangfu

U ¢
"Oleg Kononenko",
"Nikolai Chub",
"Tracy Caldwell Dyson",
"Matthew Dominick",
"Michael Barratt",
"Jeanette Epps",
"Alexander Grebenkin",
"Butch Wilmore",
"Sunita Williams"
Ty
"Tiangong": [
"Li Guangsu",
"Li Cong",
"Ye Guangfu"

Finding Leaves

We can create a vector of all the node IDs in a tree, as it is just every index in p .

1¥p

0123445678910 11

The leaf nodes are those nodes which do not have any children, i.e. those nodes which are not pointed to in the
parent vector. We can think of the parent vector as a list of all nodes which are not leaves, and remove them
from a list of all nodes to obtain only the leaf nodes:

| (i1Zp)~p

34589 10 11

Alternatively, if we want a mask of leaf nodes, we just mask those nodes which are not in the parent vector:
I ~(1#plep

000111001111

e Tutorials
e Documentation
e ‘Literate Programming’

Jupyter{book}

Parent Vectors

At the end of the previous section we settled on the parent vector representation
as the main representation of trees we will be using in this tutorial. To
reiterate, to represent a tree of n nodes, we associate each node with an index
in “wn', and create an n-element vector ‘parent’ such that if a node “i‘ is a
child of a node “j*, then “parent[i]=j".

We're going to use a slightly larger tree for the examples in this section:

Y {figure} media/PV_ManimCE_v0.18.1.png
:alt: A diagram of a new tree.

The tree we're going to work with in this section.

A

and the parent vector representing this tree:

***{code-cell}
rparent+0 01 221067770

RN

CLET LR

parent: 001221067770

i 4

In this section, we're going to look at some of the basic operations you can do on
trees represented in this way.

jupyter {book}

Parent Vectors

At the end of the previous section we settled on the parent vector representation
as the main representation of trees we will be using in this tutorial. To
reiterate, to represent a tree of n nodes, we associate each node with an index
in “wn', and create an n-element vector ‘parent’ such that if a node “i‘ is a
child of a node “j*, then ‘parent[i]=j".

We're going to use a slightly larger tree for the examples in this section:

***{figure} media/PV_ManimCE_v0.18.1.png
:alt: A diagram of a new tree.

The tree we're going to work with in this section.

A

and the parent vector representing this tree:

***{code-cell}
rparent+0 01 221067770

RN

sivR s

parent: 001221067770

i 4

In this section, we're going to look at some of the basic operations you can do on
trees represented in this way.

Parent Vectors

At the end of the previous section we settled on the parent vector rep ion as the main rep! ion of
trees we will be using in this tutorial. To reiterate, to represent a tree of n nodes, we associate each node with
anindexin in, and create an n-element vector parent such thatif anode i isachild of anode j |, then

parent[il=j .

We're going to use a slightly larger tree for the examples in this section:

Fig. 9 The tree we're going to work with in this section.

and the parent vector representing this tree:

vparent+0 01 221067770

001221067770

St Al
ol I e
parent: 001221067770
t t
B

In this section, we're going to look at some of the basic operations you can do on trees represented in this way.

jupyter {book}

Parent Vectors

At the end of the previous section we settled on the parent vector representation
as the main representation of trees we will be using in this tutorial. To
reiterate, to represent a tree of n nodes, we associate each node with an index
in “wn', and create an n-element vector ‘parent’ such that if a node
child of a node “j*, then ‘parent[i]=j".

We're going to use a slightly larger tree for the examples in this section:

***{figure} media/PV_ManimCE_v0.18.1.png
:alt: A diagram of a new tree.

The tree we're going to work with in this section.

A

and the parent vector representing this tree:

***{code-cell}

rparent+0 01 221067770

RN

sivR s

parent: 001221067770

i 4

In this section, we're going to look at some of the basic operations you can do on
trees represented in this way.

Parent Vectors

At the end of the previous section we settled on the parent vector

p ion as the main rep! ion of
trees we will be using in this tutorial. To reiterate, to represent a tree of n nodes, we associate each node with
an index in 1n |, and create an n-element vector parent such thatifanode i isachild ofanode j,then
parent[il=j

We're going to use a slightly larger tree for the examples in this section:

Fig. 9 The tree we're going to work with in this section.
and the parent vector representing this tree:

vparent+0 01 221067770

001221067770

¢
parent: 0 0
t

In this section, we're going to look at some of the basic operations you can do on trees represented in this way.

jupyter {book}

Parent Vectors

At the end of the previous section we settled on the parent vector representation
as the main representation of trees we will be using in this tutorial. To
reiterate, to represent a tree of n nodes, we associate each node with an index
in “wn', and create an n-element vector ‘parent’ such that if a node “i‘ is a
child of a node “j*, then ‘parent[i]=j".

We're going to use a slightly larger tree for the examples in this section:

**Y{figure} media/PV_ManimCE_v0.18.1.png
:alt: A diagram of a new tree.

The tree we're going to work with in this section.

A

and the parent vector representing this tree:

***{code-cell}
rparent+0 01 221067770

RN

sivR s

parent: 001221067770

i 4

In this section, we're going to look at some of the basic operations you can do on
trees represented in this way.

Parent Vectors

At the end of the previous section we settled on the parent vector

p ion as the main rep! ion of
trees we will be using in this tutorial. To reiterate, to represent a tree of n nodes, we associate each node with
anindex in 1n, and create an n-element vector | parent |such thatif a node i |is a child of a node j , then
parent[il=j

We're going to use a slightly larger tree for the examples in this section:

Fig. 9 The tree we're going to work with in this section.
and the parent vector representing this tree:

l»parent-001221067770

001221067770

¢
parent: 0 0
t

In this section, we're going to look at some of the basic operations you can do on trees represented in this way.

jupyter {book}

Parent Vectors

At the end of the previous section we settled on the parent vector representation
as the main representation of trees we will be using in this tutorial. To
reiterate, to represent a tree of n nodes, we associate each node with an index
in “wn', and create an n-element vector ‘parent’ such that if a node “i‘ is a
child of a node “j*, then ‘parent[i]=j".

We're going to use a slightly larger tree for the examples in this section:

**Y{figure} media/PV_ManimCE_v0.18.1.png
:alt: A diagram of a new tree.

The tree we're going to work with in this section.

A

and the parent vector representing this tree:

***{code-cell}
rparent+0 01 221067770

RN

sivR s

parent: 001221067770

i 4

In this section, we're going to look at some of the basic operations you can do on
trees represented in this way.

Parent Vectors

At the end of the previous section we settled on the parent vector

P ion as the main rep ion of
trees we will be using in this tutorial. To reiterate, to represent a tree of n nodes, we associate each node with
anindex in 1n/, and create an n-element vector parent such thatif anode i is achild of anode j , then
parent[il=j .

We're going to use a slightly larger tree for the examples in this section:

Fig. 9 The tree we're going to work with in this section.
and the parent vector representing this tree:

l»parent-001221067770

001221067770

¢
parent: 0 0
t

In this section, we're going to look at some of the basic operations you can do on trees represented in this way.

trees we will be using in this tutorial. To reiterate, to represent a tree of n nodes, we associate each node with
anindexin in |, and create an n-element vector parent such thatif anode i isachild of anode j |, then

Parent Vectors
J u p yt e r O O At the end of the previous section we settled on the parent vector rep ion as the main rep! ion of

parent[il=j .

We're going to use a slightly larger tree for the examples in this section:
Parent Vectors

At the end of the previous section we settled on the parent vector representation
as the main representation of trees we will be using in this tutorial. To
reiterate, to represent a tree of n nodes, we associate each node with an index
in “wn', and create an n-element vector ‘parent’ such that if a node “i‘ is a
child of a node “j*, then ‘parent[i]=j".

We're going to use a slightly larger tree for the examples in this section:

**Y{figure} media/PV_ManimCE_v0.18.1.png
:alt: A diagram of a new tree.
The tree we're going to work with in this section.

and the parent vector representing this tree:

“““code-cell} Fig. 9 The tree we're going to work with in this section.
rparent+0 01 221067770
AR and the parent vector representing this tree:
A l»parent—001221067770
I
001221067770
+ + +

parent: 001221067770

i 4

v
parent: 0 01 22 1
t
iy
In this section, we're going to look at some of the basic operations you can do on

trees represented in this way. In this section, we're going to look at some of the basic operations you can do on trees represented in this way.

https://dyalog.qgithub.io/dyalog-jupyter-kernel/

Parent Vectors

At the end of the previous section we settled on the parent vector representation
as the main representation of trees we will be using in this tutorial. To
reiterate, to represent a tree of n nodes, we associate each node with an index
in “wn', and create an n-element vector ‘parent’ such that if a node “i‘ is a
child of a node “j*, then ‘parent[i]=j".

We're going to use a slightly larger tree for the examples in this section:

**Y{figure} media/PV_ManimCE_v0.18.1.png
:alt: A diagram of a new tree.

The tree we're going to work with in this section.

A

and the parent vector representing this tree:

***{code-cell}
rparent+0 01 221067770

RN

sivR s

parent: 001221067770

i 4

Parent Vectors

At the end of the previous section we settled on the parent vector

P ion as the main rep! ion of
trees we will be using in this tutorial. To reiterate, to represent a tree of n nodes, we associate each node with
anindexin in, and create an n-element vector parent such thatifanode i isachild of anode j |, then
parent[il=j .

We're going to use a slightly larger tree for the examples in this section:

\.

Fig. 9 The tree we're going to work with in this section.
and the parent vector representing this tree:

l»parent—001221067770

001221067770

In this section, we're going to look at some of the basic operations you can do on
trees represented in this way.

v 2l
parent: 001221067
t
1 L

In this section, we're going to look at some of the basic operations you can do on trees represented in this way.

https://dyalog.github.io/dyalog-jupyter-kernel/

Manin‘

class PVInvert(Scene):
def construct(self):
p=1>L[0, 0, o 2, 2, s 0, 6, 74 7, 7, 0]
viE [ROF e M A M2 o P e e N B G R e B e gl a0 e R B)
t = tree(
p)
v,
scale = 1.5,

PP 8¢ [1 Mg by il B 1 100,294y 9y 104+ d5+ 14:]
vve s [P0 o 110" 0 P9 o 8 it T e M6 e B e Tl e 0 e RN e 0!]
tt tree(

PP

vV,

sgale-=- 1.5,

)
self.add(t)
self.play(Wait(2))
self.play(x*(
t[il.animate.move_to(tt[len(p) - i - 1]) for i in range(len(p))
))
self.play(Wait(2))

Manin‘

class PVInvert(Scene):
def construct(self):
P = [09 09 19 29 29 19 os 6s 7) 73 73 0]
v = EIOI, Iil, I2I’ l3l’ ll+l’ ISI’ I6I’ I7I’ IS" I9I, Iiol’ I11I]

t-= tree(
p)
v,
scale = 1.5,
)
PP 8¢ [1 Mg by il B 1 100,294y 9y 104+ d5+ 14:]
vv: [Iiil’ I1o|, I9I’ I8I’ I7I’ I6I’ I5I’ |l+l’ I3I’ |2|’ |1|’ IOI]
tt = tree(
PP
vV,

sgale-=- 1.5,
)
self.add(t)
self.play(Wait(2))
self.play(x*(
t[il.animate.move_to(tt[len(p) - i - 1]) for i in range(len(p))

))
self.play(Wait(2))

0123456789
1741763761
0001011010

index:
mask:

siblings of i
F_l_1

depth: 01 22123331

- —
-~
<

—

to-be-deleted

L- start of next sub-tree

1 1

parent of i —

171 %7 T 1

(~mask)/p:

o~ ~i

(Pl +

N N N O o

THE PER L

A e g PGP

https://asherbhs.qgithub.io/apl-site/trees/intro.html

https://asherbhs.github.io/apl-site/trees/intro.html

Catching Bugs

Catching Bugs

1. Broke the QA tests

1. Broke the QA tests
2. Broke the QA tests again

1. Bro
2. Bro
3. Bro

Ke t
Ke t

Ke t

ne QA tests
ne QA tests again

ne QA tests AGAIN

TRANSLATION ERROR: Unicode character
OUCS 9060 (U+2364) not in OAVU

00007f855e3a6e00
simple
6el8

00007f855e3a6e28
symbol
6e40

00007f855e3a6e58
body
6e70

6e88

6eal
6eb8
6ed0
6ee8
6f00
6718
6f30
6fu48
6f60
6f78
00007f855e3a6f90
stack
6fa8

6fcO
6fd8
6ff0
7008
7020

703R

FEFFFFFFFFFFFFFD
5
0000000000000007

fffffffffffffffa
6
0000000000000000
*x<=
fFEFFFfffffffffdo
39
006a0000004b7000
[110 0]
012c000001150000
[710 6]
5601670e6f235800
000033010d03005e
4c006021742c6f1c
027821614c013357
324a2c61560b6061
23d4000033010d0c
003301570f4a3d67
155712670e6f2307
010d13005e07806f
33010d17005e0457
ffffffffffffffel
31
0000000000000000
*LINK
0000000000000000
*RefCo
0000000000000000
*xAlpha
0000000000000000
*0Orand
00007f855e3a3428
*Name
0000000000000000
*OptCo
nonnnnnnnnnnnnnn

0000000000000001
00000000001a7248
006e666461727420
tradfn
0000000000000002
00000000001a7270
0000000000000000
*x=>
0000000000000001
00000000001a72a0
00c8000000a20000
[31L 2]
3a70670a01330000
[8]
6900004c00324a2c
201f6b670e6f2378
6021614c01474c02
000033010d09005e
00004c011f214c00
011f15570d670e6f
3a80670e6f23f100
022a331b0b022a33
670e6f232b010033
00670a6f23320100
0000000000000001
00000000001a73d8
000000000000000F
count
00007f855e3a5db8
*DeflLs
0000000000000000
*Omega
0000000000000000
*Static
00007f855e352b30
xUser
00007f855e3a7088
xScriptInfo
nnnnnnnnnnnnnnnn

000000000000271F
Ve

000000000000c001
C

00007f855e3a6e00
*value
000000000009009e
<#>
00f2000000e30000
[51[4]
0033016f1b4a0000

084c01724c036f1c
a100004c001b3b02
071e57064a405705
560a60670e6f23b9
005e024c016f1icc?
570e6f1ce200004c
010033014c014f81
1c1401004c011b0Ob
1621852180215714
0000000061 f4300
0000000030005145
DFN
00007f855e3a6e58
*DefCo
0000000000000000
*ReflLs
0000000000000000
*0land
0000000000000000
*Ptokn/Utokn
0000000000000000
*Monitor
000000000000004a
DefOs
0nnnnnnnnnnnnnnn

00007f5a7c8842f0 fFFfffffffffffff2

simple

14

4308 0000000000000026

4320 007e2368002f0056

v

/

4338 2218003000282364

(

0

°

4350 2395220a00270032

2

€

0

0000000000000001
0000000000084738
0020002000200020

2374237323680027
' = v P

00a800292355002¢
. +) .-

000000000056004 1
ALY

000000000000281 f
Yc

0041239500200020
o A

220a003022182373
v ° 0 €

0030003000382373
1 8 0 0

00007f5a7c8842f0 fffffffffffffff2
simple it
4308 0000000000000026

0000000000000001 000000000000281 f
0000000000084738 Vc
0020002000200020 0041239500200020

o A
4320 007e2368002f0056 2374237323680027 220a003022182373
Voo o ! = 1 p v ° 0---e
4338 2218003000282364 00a800292355002¢ 0030003000382373
P 0 o s 3) B PO R+ IR ¢
4350 2395220a00270032 0000000000560041
2 > e [0 A Y
00007f5a7c8842f0
LENGTH: 14
REFCOUNT: 1
TYPESIMPLE
RANK : 1
ELTYPE: WCHAR16
STICKY: 0
SQUOZE: 1
MMFLAG: 0
MMFLAG2: 0
MAPPED: 0
mmpad : 0
SHAPE : 38

OAV/=~'=1p100€...

00007f5a7c884288

LENGTH: 7
REFCOUNT: 1
TYPEGEN
RANK: 1
ELTYPE: PNTR
STICKY: 0
SQUOZE: 0
MMFLAG: 0
MAPPED: 0
mmpad: 0
SHAPE: 3
x[0] (hidden)

x[1]
x[2] (hidden)

» 00007f5a7c8842f0

LENGTH: 14
REFCOUNT: 1
TYPESIMPLE
RANK : 1

ELTYPE: WCHAR16
STICKY:
SQUOZE:
MMFLAG:
MMFLAG2:
MAPPED:
mmpad:

SHAPE: 38
OAV/=~'=1pteQ€...

OoO0OoO0OO0O=oOo

00007f5a7c884120

LENGTH: 6
REFCOUNT : 1
TYPEFPTR
FSUB: SYSPROP
version: 1

*FVALUE
id: 7

xinf (hidden)

00007f5a7c884288
LENGTH: 7
REFCOUNT : 1
TYPEGEN
RANK : 1
ELTYPE: PNTR
STICKY: 0
SQUOZE: 0
MMFLAG: 0
MAPPED: 0
mmpad: 0
SHAPE : 3
x[0] (hidden)
x[1]

x[2] (hidden)

00007f5a7c8842f0
LENGTH: 14
REFCOUNT : 1
TYPESIMPLE
RANK : 1
ELTYPE: WCHAR16
STICKY: 0
SQUOZE: 1
MMFLAG: 0
MMFLAG2 : 0
MAPPED: 0
mmpad: 0
SHAPE : 38

JAV/=~'=1p1e0€. ..

G007 aTeasniz0

RercomT 1

00007 15aTes8v288

o rsaressizeo
Lo &
|
10K
WILAG
Lo 7 &
rercowr: 1 e
Tipcaen e
o
sauore:
s
i
| pad o
st .
(03 :
sabor
st
Pmpps
e

oooorSaTeassEss
RercounT: 10
e Onar
Satiee: ik
s o
i o
LoowT 7

“LasvoRte)
o000000000000000
0000000000000005
5000000000000000

]
7]

o
Rercou

[msmacemicsat < o |
wne: 1 229782930815

e =0
vcooe

WELALL): 1229782938815

risT o
HFLAGS: 0003000000000000
2000000000000000
MeLAsSOtE = 0
VARETpoS 32297820

WeRRORTASK: O

000075a7e883¢30 |
[
RercowT.
e

ETe: vou

o
o
o

empads
swaoc:
oyates

5
H

swpe: o
replicate.copn117..

00007 r587cB92Tn

o
O

arie “

Criasen)
RIGHT (nidgen)

Lo
RercounT:

ey
iz
s

e
swoe:
Eipue0er (0-,9) 18002

00007 Sa7caBN120

RercomT 1

S0007rsacasuzee
Lo 7

H
&

T

o000000000000000
5000000000000000
2000000000000000
500000000000047¢

090075 a7e888260
LeneTH .
RercowT: |
TvetsmeLe |
ELTIPE UoHAR
STIOKY
sauoze:
HHFLAG!
ABRED:
rmped |
saapes 12|
LenGTH eRRoR |
00007 ¢5a7c8sv210
ReFcowT: 1
TipEsTpLE
Ra:
ELTIPE uouARI
sa.

\ ot

s
suapce a
v/ Eipnee

asoerrsarassanns
e @
rercaunr:

TysespeLE
e, vounea
i

5

wne: 1 229782930815

VRTOR/MUTOK: SPARE_TORENGD
WoUL0): 1229782538815

[Tneuato): 1. zasresaness
WELALL): 1229782938815

HFLAGS: 0003000000000000
a

e HSTACK A

vcooe
wec: Bl
PG 17297885

i -0

WU 1,229

oasess

risT o

000000000000000

WeRRORTASK: O

5

swpe: o
replicate.copn117..

00007 r587cB92Tn
L

o
O
Tvoes L

i

H

arie .

LT Chidoen)
RIGHT (nidgen)

Lo

Eipue0er (0-,9) 18002

00007f5a7c8838a8

LENGTH: 19
REFCOUNT : 10
TYPESAACK

MARK :

SUBTYPE:
magic:
XTRAP:
version:

*L INK

LCOUNT:

o alsreamsmmes I AN AN ”~

ldisplay ;[DMX.DM

00007f5a7c8838a8 =
I
LENGTH: 19 LENGTH ERROR
REFCOUNT: 10
TYPESAACK OAV/~~"~1p1c0€°(0°,3) 18002"'e[JAV
MARK:

¥

SUBTYPE:
magic:
XTRAP:

*L INK =

0
0
version: 0
0
7

LCOUNT:

o alsreamsmmes I AN AN ”~

o 0B WN o

Broke the QA tests

Broke the QA tests again
Broke the QA tests AGAIN
Fixed the QA tests!

Made a tool

00007f855e3a6e00
simple
6el8

00007f855e3a6e28
symbol
6e40

00007f855e3a6e58
body
6e70

6e88

6eal
6eb8
6ed0
6ee8
6f00
6f18
6f30
6fu48
6f60
6f78
00007f855e3a6f90
stack
6fa8

6fcO
6fd8
6ff0
7008
7020

703R

FFFFfffffffffffb
5
0000000000000007

FEEFEPrErtrreErra
6
0000000000000000
*<=
fEFfFfFffffffffdo
39
006a0000004b7000
[110 0]
012c000001150000
[710 6]
5601670e6f235800
000033010d03005e
4c006021742cé6f1c
027821614c013357
324a2c61560b6061
23d4000033010d0c
003301570f4a3d67
155712670e6f2307
010d13005e07806f
33010d17005e0457
ffffffffffffffel
31
0000000000000000
*LINK
0000000000000000
xRefCo
0000000000000000
xAlpha
0000000000000000
*Orand
00007f855e3a3428
*Name
0000000000000000
*xOptCo
nannnnnnnnnnnnnn

0000000000000001
00000000001a7248
006e666461727420
tradfn
0000000000000002
00000000001a7270
0000000000000000
*x=>
0000000000000001
00000000001a72a0
00c8000000a20000
[310 2]
3a70670a01330000
[8]
6900004c00324%a2c
201f6b670e6f2378
6021614c01474c02
000033010d09005e
00004c011f214c00
011f15570d670e6f
3a80670e6f23f100
022a331b0b022a33
670e6f232b010033
00670a6f23320100
0000000000000001
00000000001a73d8
000000000000000f
count
00007f855e3a5db8
xDeflLs
0000000000000000
*Omega
0000000000000000
xStatic
00007f855e352b30
xUser
00007f855e3a7088
xScriptInfo
nnnnnnnnnnnnnnnn

000000000000271f
Ve

000000000000c001
C

00007f855e3a6e00
xvalue
000000000009009e
<#>
00f2000000e30000
[510 4]
0033016f1b4%a0000

084c01724c036f1ic
a100004c001b3b02
071e57064a405705
560a60670e6f23b9
005e024c016ficc?
570e6f1ce200004c
010033014c014f81
1c1401004c011b0b
1621852180215714
000000006f1f4300
0000000030005145
DFN
00007f855e3a6e58
*DefCo
0000000000000000
*ReflLs
0000000000000000
*0land
0000000000000000
xPtokn/Utokn
0000000000000000
*Monitor
000000000000004a
DefOs
nnnnnnnnnnn00n0000

00007¢855¢2002e8
LENGTH: 5
REFCOUNT 2

TYPESIMPLE
RANK:

ELTYPE:
STICKY:

00007¢855e613f88
LENGTH: 5
REFCOUNT 1

TYPESIMPLE
RANK:

ELTYPE: SINT

E3

LENGTH: 5
REFCOUNT: 1

TYPESIMPLE
RANK:

ELTYPE: SINT

LENGTH: 5
REFCOUNT: 1
TYPESIMPLE

RANK:

00007f855¢613de0
LENGTH: s
REFCOUNT: 1

TYPESIMPLE
RANK:

ELTYPE: WCHARS
X o

3
k]

0007855613208
LENGTH: 5
REFCOUNT: 1

TYPESIMPLE
RANK:

ELTYPE: WCHARS
X o

=
Ed

vl

WESSEURSSFRSSUHISSSESSS N SSSSSeSpan | e —yo— 11 JSS___——p——— —————IGh
m___“.w__«s“ M__“.w_ﬁ:. M._“.W__“s. ___w_w__m__, _a.___x__. _?__x__. _W_,_w»___»::ﬁm _,;ﬁ_w__%.i ,___“ﬁszf _mw“.m_“é”?‘a_»«__. Eﬁsﬁ __%__E__% ,*E“M,ME

https://asherbhs.qgithub.io/apl-site/trees/intro.html

https://asherbhs.github.io/apl-site/trees/intro.html

