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Dyalog + AI = ...?

Stefan Kruger
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⬢ New APLer (first decade) -- 3 years at Dyalog

⬢ Previously at IBM for long stint

⬢ Computer Science background

⬢ @ Dyalog: provider of outside perspective

Who am I?
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⬢ AI for developer productivity 

⬢ Applications

⬢ Semantic search

⬢ Retrieval-Augmented Generation (RAG)

⬢ Client libraries

Points
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⬢ Value proposition:

⬢ 10x yourself!

⬢ Remove 'drudge'!

⬢ ... (mumbles)

⬢ $PROFIT!

AI for developer productivity 
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AI does improve developer productivity

Reality check
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...if you're in its wheelhouse

Reality check
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Small, constrained tasks; "bookwork"

Reality check
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Mechanical refactoring of code

Reality check
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Improves velocity, not competency!

Reality check
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Does not turn interns into senior devs

Reality check
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APL: improving (but must try harder)

Reality check
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Pace of improvement: off charts
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⬢ World looks different today from 18 months ago last week

Pace of improvement: off charts
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Latest LLM
Anthropic 
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⬢

⬢ Claude Opus 4.1 perfectly capable of explaining APL code

⬢

⬢

Pace of improvement: off charts
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Start and end at any two (different) locations. Must visit each 

location exactly once. What is the shortest distance?

Given the following distances:
London to Dublin  = 464

London to Belfast = 518

Dublin to Belfast = 141

The shortest is London → Dublin → Belfast = 605
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'pmat'⎕CY'dfns'
data←' '(≠⊆⊢)¨'(to|=)'⎕R' '⊃⎕NGET'data9.txt'1

Day9←{
    weights←w,w←⍎¨⊢/↑⍵                 
    edges←(⊢⍪⌽)28 2⍴(∪⍳⊢),(↑⍵)[;1 2]  
    adj←weights@(↓edges)⊢0⍴⍨2⍴8       
    (⌊/,⌈/)+/adj[↓{∊⍵}⌺1 2⊢pmat 8]
}
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⬢ Original Co-pilot: contextual auto-complete

⬢ Copy & paste Stack Overflow ChatGPT

⬢ AI-integrated IDEs (Cursor, Zed, Windsurf...)

⬢ Console/cloud agents (Claude Code, Aider, Codex...)

AI Tooling: towards greater autonomy

AI in cli-environment
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⬢ Tight integration into Dyalog Integrated Development 
Environment (IDE)?

⬢ Uncomfortably fast-moving goal posts

⬢ Not in the 'move fast & break things' camp!

⬢ Models still below-par for APL

AI Tooling: Dyalog's Challenge
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⬢ Good match for Link-driven workflows

⬢ Already watching for changes = fast feedback loop

⬢ No UI overlays or chat panels in the Dyalog environment

Console Agents + Link = 
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⬢ LLM in a loop + tools use in the CLI

⬢ Runs your whole tool chain: git, test runner, CI

⬢ High autonomy: set it off, go for lunch

⬢ ...come back to PR ready for review

Console Agents
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⬢ LLM in a loop + tools use in the CLI

⬢ Runs your whole tool chain: git, test runner, CI

⬢ High autonomy: set it off, go for lunch

⬢ ...come back to PR ready for review

Console Agents

Suggested changes
to a project's code
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⬢ Storing your code as text files

⬢ Ability to run APL from the command line

⬢ Everything accessible and introspectable via CLI

⬢ Rich error reporting

Console Agents: Implications
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Dyalog + Claude Code Agent

AI in cli-environment
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parse ← {
  parts ← (⍵='=')⊆⍵ 
  route ← ⊃parts 
  dist ← ⍎(⊃⌽parts)
  cities ← ((route≠' ')∧~(¯2⌽0 0 1 1 0)⌽⍨≢route)⊆route
  (⊃cities)(⊃⌽cities)dist
}

edges ← parse¨data
cities ← ∪⊃,/(2↑)¨edges
n ← ≢cities
dist ← (n,n)⍴0

{
  (c1 c2 d) ← ⍵
  i j ← cities⍳c1 c2
  dist[i;j] ← dist[j;i] ← d
}¨edges

perm ← {
  ⍵=0: ,⊂⍬
  ⊃,/{⍵,¨∇(⍳⍺)~⍵}/⍳⍵
}

routes ← perm n
routeDist ← {
  ⍵=⍬: 0
  pairs ← 2,/⍵              
  +/dist[⊃¨pairs;⊃¨⌽¨pairs] 
}
distances ← routeDist¨routes
⌊/distances
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parse ← {
  parts ← (⍵='=')⊆⍵ 
  route ← ⊃parts 
  dist ← ⍎(⊃⌽parts)
  cities ← ((route≠' ')∧~(¯2⌽0 0 1 1 0)⌽⍨≢route)⊆route
  (⊃cities)(⊃⌽cities)dist
}

edges ← parse¨data
cities ← ∪⊃,/(2↑)¨edges
n ← ≢cities
dist ← (n,n)⍴0

{
  (c1 c2 d) ← ⍵
  i j ← cities⍳c1 c2
  dist[i;j] ← dist[j;i] ← d
}¨edges

perm ← {
  ⍵=0: ,⊂⍬
  ⊃,/{⍵,¨∇(⍳⍺)~⍵}/⍳⍵
}

routes ← perm n
routeDist ← {
  ⍵=⍬: 0
  pairs ← 2,/⍵              
  +/dist[⊃¨pairs;⊃¨⌽¨pairs] 
}
distances ← routeDist¨routes
⌊/distances

LENGTH ERROR
parse[4] cities←((route≠' ')∧~(¯2⌽0 0 1 1 0)⌽⍨≢route)⊆route
                                                     ∧
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⬢ Carefully tuned instructions (CLAUDE.md)

⬢ Dyalog evaluation

⬢ APLCart lookup

⬢ Dyalog documentation 

⬢ Console-only unit testing

Claude Code: Stacking the Deck
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Visual Studio Code (VS Code)
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Problem text

Preview
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test_given_example ← {
      data ← 'London to Dublin = 464' 'London to Belfast = 518' 'Dublin to Belfast = 141'
      expected ← 605

      result ← #.Day9 data
      'Wrong result'#.dytest.Assert result = expected:
      1
    }

    test_solution ← {
      data ← ⊃⎕NGET'data/task1-1.txt'1
      expected ← 251
      result ← #.Day9 data
      'Wrong result'#.dytest.Assert result = expected:
      1
    }
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⬢ Read the task description in task-1.md. Outline a solution 
in PLAN.md, and let's review.

⬢ Proceed with implementing your plan. Ensure to 
implement tests for intermediate steps, or ad-hoc testing 
with the 'dyalogscript' tool.

⬢ [goes for lunch]

Two prompts only
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Day9←{
    _←'pmat'⎕CY'dfns'
    parsed←'(\w+) to (\w+) = (\d+)'⎕S{⍵.(1↓Lengths↑¨Offsets↓¨⊂Block)}⊢⍵
    cities←∪⊃,/2↑¨parsed
    n←≢cities
    dist←n n⍴0
    _←{
        from to d←⍵
        i j←cities⍳from to
        dist[i;j]←dist[j;i]←⍎d
    }¨parsed
    ⌊/{+/{dist[⊃⍵;⊃⌽⍵]}¨2,/⍵}¨↓pmat n
}
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'pmat'⎕CY'dfns'
data←' '(≠⊆⊢)¨'(to|=)'⎕R' '⊃⎕NGET'data9.txt'1
Day9←{
    weights←w,w←⍎¨⊢/↑⍵                 
    edges←(⊢⍪⌽)28 2⍴(∪⍳⊢),(↑⍵)[;1 2]  
    adj←weights@(↓edges)⊢0⍴⍨2⍴8       
    (⌊/,⌈/)+/adj[↓{∊⍵}⌺1 2⊢pmat 8]
}
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Agent loop + tools use > single shot
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Productivity gain: net-negative
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About a day's worth of tweaking
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The Elephant in the Room

⬢ Models just aren't good enough at APL

⬢ ...yet. 

⬢ Lack of training data

⬢ Lack of incentives

⬢ No APL-specific tokenisers
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Semantic Search; RAG
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⬢ Semantic search: "what I mean, not what I say"

⬢ Use a model to create vector embeddings to encode 
meaning

⬢ Query becomes a nearest neighbor problem in a vector 
space

AI Applications: Semantic Search
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Query
Closest in meaning
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curl -s -X POST "http://localhost:8000/search" \        
     -H "Content-Type: application/json" \
     -d '{"query": "how do I serialise and compress a vector?", "k": 5}' | jq .

Search Dyalog's Docs
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{
  "urls": [
    "https://dyalog.github.io/documentation/20.0/language-reference-guide/the-i-beam-operator/compress-decompress-vector-of-short-integers",
    "https://dyalog.github.io/documentation/20.0/language-reference-guide/the-i-beam-operator/serialise-deserialise-array",
    "https://dyalog.github.io/documentation/20.0/language-reference-guide/system-functions/fprops",
    "https://dyalog.github.io/documentation/20.0/programming-reference-guide/introduction/arrays/array-notation",
    "https://dyalog.github.io/documentation/20.0/programming-reference-guide/introduction/namespaces/serialising-namespaces"
  ],
  "scores": [
    0.5287122130393982,
    0.4902539551258087,
    0.42364850640296936,
    0.40454745292663574,
    0.3980979919433594
  ]
}

Search Dyalog's Docs
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Search Dyalog's Docs

{
  "urls": [
    ".../the-i-beam-operator/compress-decompress-vector-of-short-integers",
    ".../the-i-beam-operator/serialise-deserialise-array",
    ".../system-functions/fprops",
    ".../introduction/arrays/array-notation",
    ".../introduction/namespaces/serialising-namespaces"
  ],
  "scores": [
      ...
  ]
}
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Client libraries
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⬢ Build AI-enabled applications in Dyalog APL

⬢ "Smart data", forecasts, chatbots, assistants...

Client libraries
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⬢ Dyalog provides basic client libraries for OpenAI-
compatible providers

              https://dyalog.github.io/OpenAI

⬢ Bigger job than it seems: API spec alone is 40k lines...

Client libraries
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⬢ Situation is rapidly improving, but...

⬢ ...fair way to go before improving dev productivity

⬢ Agents looks like the shape of AI-for-development

⬢ Semantic search, RAG: solid today

⬢ Build your own AI-applications with Dyalog

State of the APL-AI nation
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⬢ Improve CLI story: testing, code evaluation

⬢ New AI-friendly documentation format

⬢ Improve error messaging, stack traces

⬢ Client libraries

⬢ Examples, training materials

⬢ Publish more APL code

What will Dyalog do?



80



81

Lack of APL code 'out there'
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Can you help? Talk to us.
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