
1

Dyalog + AI = ...?

Stefan Kruger



2

⬢ New APLer (first decade) -- 3 years at Dyalog

⬢ Previously at IBM for long stint

⬢ Computer Science background

⬢ @ Dyalog: provider of outside perspective

Who am I?



3

⬢ AI for developer productivity 

⬢ Applications

⬢ Semantic search

⬢ Retrieval-Augmented Generation (RAG)

⬢ Client libraries

Points



4

⬢ Value proposition:

⬢ 10x yourself!

⬢ Remove 'drudge'!

⬢ ... (mumbles)

⬢ $PROFIT!

AI for developer productivity 



5

⬢ Value proposition:

⬢ 10x yourself!

⬢ Remove 'drudge'!

⬢ ... (mumbles)

⬢ $PROFIT!

AI for developer productivity 



6

AI does improve developer productivity

Reality check



7

...if you're in its wheelhouse

Reality check



8

Small, constrained tasks; "bookwork"

Reality check



9

Mechanical refactoring of code

Reality check



10

Improves velocity, not competency!

Reality check



11

Does not turn interns into senior devs

Reality check



12

APL: improving (but must try harder)

Reality check



13

Pace of improvement: off charts



14

⬢ World looks different today from 18 months ago last week

Pace of improvement: off charts



15

⬢ World looks different today from 18 months ago last week

⬢ Claude Opus 4.1 perfectly capable of explaining APL code

Pace of improvement: off charts



16

⬢ World looks different today from 18 months ago last week

⬢ Claude Opus 4.1 perfectly capable of explaining APL code

Pace of improvement: off charts

Latest LLM
Anthropic 



17

⬢ World looks different today from 18 months ago last week

⬢ Claude Opus 4.1 perfectly capable of explaining APL code

⬢ Writes mostly correct APL in constrained domains

Pace of improvement: off charts



18

⬢ World looks different today from 18 months ago last week

⬢ Claude Opus 4.1 perfectly capable of explaining APL code

⬢ Writes mostly correct APL in constrained domains

⬢ 18-24 months behind the curve

Pace of improvement: off charts



19

⬢ World looks different today from 18 months ago last week

⬢ Claude Opus 4.1 perfectly capable of explaining APL code

⬢ Writes mostly correct APL in constrained domains

⬢ 18-24 months behind the curve

Pace of improvement: off charts



20

⬢ World looks different today from 18 months ago last week

⬢ Claude Opus 4.1 perfectly capable of explaining APL code

⬢ Writes mostly correct APL in constrained domains

⬢ 18-24 months behind the curve

Pace of improvement: off charts



21



22

⬢

⬢ Claude Opus 4.1 perfectly capable of explaining APL code

⬢

⬢

Pace of improvement: off charts



23



24

Start and end at any two (different) locations. Must visit each 

location exactly once. What is the shortest distance?

Given the following distances:
London to Dublin  = 464

London to Belfast = 518

Dublin to Belfast = 141

The shortest is London → Dublin → Belfast = 605



25

'pmat'⎕CY'dfns'
data←' '(≠⊆⊢)¨'(to|=)'⎕R' '⊃⎕NGET'data9.txt'1

Day9←{
    weights←w,w←⍎¨⊢/↑⍵                 
    edges←(⊢⍪⌽)28 2⍴(∪⍳⊢),(↑⍵)[;1 2]  
    adj←weights@(↓edges)⊢0⍴⍨2⍴8       
    (⌊/,⌈/)+/adj[↓{∊⍵}⌺1 2⊢pmat 8]
}



26



27

⬢ Original Co-pilot: contextual auto-complete

⬢ Copy & paste Stack Overflow ChatGPT

⬢ AI-integrated IDEs (Cursor, Zed, Windsurf...)

⬢ Console/cloud agents (Claude Code, Aider, Codex...)

AI Tooling: towards greater autonomy

AI in cli-environment



28

⬢ Tight integration into Dyalog Integrated Development 
Environment (IDE)?

⬢ Uncomfortably fast-moving goal posts

⬢ Not in the 'move fast & break things' camp!

⬢ Models still below-par for APL

AI Tooling: Dyalog's Challenge



29

⬢ Good match for Link-driven workflows

⬢ Already watching for changes = fast feedback loop

⬢ No UI overlays or chat panels in the Dyalog environment

Console Agents + Link = 



30

⬢ LLM in a loop + tools use in the CLI

⬢ Runs your whole tool chain: git, test runner, CI

⬢ High autonomy: set it off, go for lunch

⬢ ...come back to PR ready for review

Console Agents



31

⬢ LLM in a loop + tools use in the CLI

⬢ Runs your whole tool chain: git, test runner, CI

⬢ High autonomy: set it off, go for lunch

⬢ ...come back to PR ready for review

Console Agents

Suggested changes
to a project's code



32

⬢ LLM in a loop + tools use in the CLI

⬢ Runs your whole tool chain: git, test runner, CI

⬢ High autonomy: set it off, go for lunch

⬢ ...come back to PR ready for review

⬢ Visceral cost-benefit feedback

Console Agents



33

⬢ LLM in a loop + tools use in the CLI

⬢ Runs your whole tool chain: git, test runner, CI

⬢ High autonomy: set it off, go for lunch

⬢ ...come back to PR ready for review

⬢ Visceral cost-benefit feedback

Console Agents



34

⬢ Storing your code as text files

⬢ Ability to run APL from the command line

⬢ Everything accessible and introspectable via CLI

⬢ Rich error reporting

Console Agents: Implications



35

Dyalog + Claude Code Agent

AI in cli-environment



36



37

parse ← {
  parts ← (⍵='=')⊆⍵ 
  route ← ⊃parts 
  dist ← ⍎(⊃⌽parts)
  cities ← ((route≠' ')∧~(¯2⌽0 0 1 1 0)⌽⍨≢route)⊆route
  (⊃cities)(⊃⌽cities)dist
}

edges ← parse¨data
cities ← ∪⊃,/(2↑)¨edges
n ← ≢cities
dist ← (n,n)⍴0

{
  (c1 c2 d) ← ⍵
  i j ← cities⍳c1 c2
  dist[i;j] ← dist[j;i] ← d
}¨edges

perm ← {
  ⍵=0: ,⊂⍬
  ⊃,/{⍵,¨∇(⍳⍺)~⍵}/⍳⍵
}

routes ← perm n
routeDist ← {
  ⍵=⍬: 0
  pairs ← 2,/⍵              
  +/dist[⊃¨pairs;⊃¨⌽¨pairs] 
}
distances ← routeDist¨routes
⌊/distances



38

parse ← {
  parts ← (⍵='=')⊆⍵ 
  route ← ⊃parts 
  dist ← ⍎(⊃⌽parts)
  cities ← ((route≠' ')∧~(¯2⌽0 0 1 1 0)⌽⍨≢route)⊆route
  (⊃cities)(⊃⌽cities)dist
}

edges ← parse¨data
cities ← ∪⊃,/(2↑)¨edges
n ← ≢cities
dist ← (n,n)⍴0

{
  (c1 c2 d) ← ⍵
  i j ← cities⍳c1 c2
  dist[i;j] ← dist[j;i] ← d
}¨edges

perm ← {
  ⍵=0: ,⊂⍬
  ⊃,/{⍵,¨∇(⍳⍺)~⍵}/⍳⍵
}

routes ← perm n
routeDist ← {
  ⍵=⍬: 0
  pairs ← 2,/⍵              
  +/dist[⊃¨pairs;⊃¨⌽¨pairs] 
}
distances ← routeDist¨routes
⌊/distances

LENGTH ERROR
parse[4] cities←((route≠' ')∧~(¯2⌽0 0 1 1 0)⌽⍨≢route)⊆route
                                                     ∧



39



40

⬢ Carefully tuned instructions (CLAUDE.md)

⬢ Dyalog evaluation

⬢ APLCart lookup

⬢ Dyalog documentation 

⬢ Console-only unit testing

Claude Code: Stacking the Deck



41

Visual Studio Code (VS Code)



42

Problem text

Preview



43

test_given_example ← {
      data ← 'London to Dublin = 464' 'London to Belfast = 518' 'Dublin to Belfast = 141'
      expected ← 605

      result ← #.Day9 data
      'Wrong result'#.dytest.Assert result = expected:
      1
    }

    test_solution ← {
      data ← ⊃⎕NGET'data/task1-1.txt'1
      expected ← 251
      result ← #.Day9 data
      'Wrong result'#.dytest.Assert result = expected:
      1
    }



44

⬢ Read the task description in task-1.md. Outline a solution 
in PLAN.md, and let's review.

⬢ Proceed with implementing your plan. Ensure to 
implement tests for intermediate steps, or ad-hoc testing 
with the 'dyalogscript' tool.

⬢ [goes for lunch]

Two prompts only



45



46



47



48



49



50



51



52



53



54



55



56



57



58



59



60

Day9←{
    _←'pmat'⎕CY'dfns'
    parsed←'(\w+) to (\w+) = (\d+)'⎕S{⍵.(1↓Lengths↑¨Offsets↓¨⊂Block)}⊢⍵
    cities←∪⊃,/2↑¨parsed
    n←≢cities
    dist←n n⍴0
    _←{
        from to d←⍵
        i j←cities⍳from to
        dist[i;j]←dist[j;i]←⍎d
    }¨parsed
    ⌊/{+/{dist[⊃⍵;⊃⌽⍵]}¨2,/⍵}¨↓pmat n
}



61

'pmat'⎕CY'dfns'
data←' '(≠⊆⊢)¨'(to|=)'⎕R' '⊃⎕NGET'data9.txt'1
Day9←{
    weights←w,w←⍎¨⊢/↑⍵                 
    edges←(⊢⍪⌽)28 2⍴(∪⍳⊢),(↑⍵)[;1 2]  
    adj←weights@(↓edges)⊢0⍴⍨2⍴8       
    (⌊/,⌈/)+/adj[↓{∊⍵}⌺1 2⊢pmat 8]
}



62

Agent loop + tools use > single shot



63

Productivity gain: net-negative



64

About a day's worth of tweaking



65

The Elephant in the Room

⬢ Models just aren't good enough at APL

⬢ ...yet. 

⬢ Lack of training data

⬢ Lack of incentives

⬢ No APL-specific tokenisers



66

Semantic Search; RAG



67

⬢ Semantic search: "what I mean, not what I say"

⬢ Use a model to create vector embeddings to encode 
meaning

⬢ Query becomes a nearest neighbor problem in a vector 
space

AI Applications: Semantic Search



68

Query
Closest in meaning



69

curl -s -X POST "http://localhost:8000/search" \        
     -H "Content-Type: application/json" \
     -d '{"query": "how do I serialise and compress a vector?", "k": 5}' | jq .

Search Dyalog's Docs



70

{
  "urls": [
    "https://dyalog.github.io/documentation/20.0/language-reference-guide/the-i-beam-operator/compress-decompress-vector-of-short-integers",
    "https://dyalog.github.io/documentation/20.0/language-reference-guide/the-i-beam-operator/serialise-deserialise-array",
    "https://dyalog.github.io/documentation/20.0/language-reference-guide/system-functions/fprops",
    "https://dyalog.github.io/documentation/20.0/programming-reference-guide/introduction/arrays/array-notation",
    "https://dyalog.github.io/documentation/20.0/programming-reference-guide/introduction/namespaces/serialising-namespaces"
  ],
  "scores": [
    0.5287122130393982,
    0.4902539551258087,
    0.42364850640296936,
    0.40454745292663574,
    0.3980979919433594
  ]
}

Search Dyalog's Docs



71

Search Dyalog's Docs

{
  "urls": [
    ".../the-i-beam-operator/compress-decompress-vector-of-short-integers",
    ".../the-i-beam-operator/serialise-deserialise-array",
    ".../system-functions/fprops",
    ".../introduction/arrays/array-notation",
    ".../introduction/namespaces/serialising-namespaces"
  ],
  "scores": [
      ...
  ]
}



72



73



74

Client libraries



75

⬢ Build AI-enabled applications in Dyalog APL

⬢ "Smart data", forecasts, chatbots, assistants...

Client libraries



76

⬢ Dyalog provides basic client libraries for OpenAI-
compatible providers

              https://dyalog.github.io/OpenAI

⬢ Bigger job than it seems: API spec alone is 40k lines...

Client libraries



77



78

⬢ Situation is rapidly improving, but...

⬢ ...fair way to go before improving dev productivity

⬢ Agents looks like the shape of AI-for-development

⬢ Semantic search, RAG: solid today

⬢ Build your own AI-applications with Dyalog

State of the APL-AI nation



79

⬢ Improve CLI story: testing, code evaluation

⬢ New AI-friendly documentation format

⬢ Improve error messaging, stack traces

⬢ Client libraries

⬢ Examples, training materials

⬢ Publish more APL code

What will Dyalog do?



80



81

Lack of APL code 'out there'



82

Can you help? Talk to us.


	Slide 1: Dyalog + AI = ...?
	Slide 2: Who am I?
	Slide 3: Points
	Slide 4: AI for developer productivity 
	Slide 5: AI for developer productivity 
	Slide 6: AI does improve developer productivity
	Slide 7: ...if you're in its wheelhouse
	Slide 8: Small, constrained tasks; "bookwork"
	Slide 9: Mechanical refactoring of code
	Slide 10: Improves velocity, not competency!
	Slide 11: Does not turn interns into senior devs
	Slide 12: APL: improving (but must try harder)
	Slide 13: Pace of improvement: off charts
	Slide 14: Pace of improvement: off charts
	Slide 15: Pace of improvement: off charts
	Slide 16: Pace of improvement: off charts
	Slide 17: Pace of improvement: off charts
	Slide 18: Pace of improvement: off charts
	Slide 19: Pace of improvement: off charts
	Slide 20: Pace of improvement: off charts
	Slide 21
	Slide 22: Pace of improvement: off charts
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: AI Tooling: towards greater autonomy
	Slide 28: AI Tooling: Dyalog's Challenge
	Slide 29: Console Agents + Link = ❤️
	Slide 30: Console Agents
	Slide 31: Console Agents
	Slide 32: Console Agents
	Slide 33: Console Agents
	Slide 34: Console Agents: Implications
	Slide 35: Dyalog + Claude Code Agent
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40: Claude Code: Stacking the Deck
	Slide 41: Visual Studio Code (VS Code)
	Slide 42
	Slide 43
	Slide 44: Two prompts only
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62: Agent loop + tools use > single shot
	Slide 63: Productivity gain: net-negative
	Slide 64: About a day's worth of tweaking
	Slide 65: The Elephant in the Room
	Slide 66: Semantic Search; RAG
	Slide 67: AI Applications: Semantic Search
	Slide 68
	Slide 69: Search Dyalog's Docs
	Slide 70: Search Dyalog's Docs
	Slide 71: Search Dyalog's Docs
	Slide 72
	Slide 73
	Slide 74: Client libraries
	Slide 75: Client libraries
	Slide 76: Client libraries
	Slide 77
	Slide 78: State of the APL-AI nation
	Slide 79: What will Dyalog do?
	Slide 80
	Slide 81: Lack of APL code 'out there'
	Slide 82: Can you help? Talk to us.

