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Dyalog + Al = ...?

Stefan Kruger
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Who am I?

New APLer (first decade) -- 3 years at Dyalog
Previously at IBM for long stint
Computer Science background

@ Dyalog: provider of outside perspective
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Points

@ Al for developer productivity
® Applications
@ Semantic search
® Retrieval-Augmented Generation (RAG)

® Client libraries
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Al for developer productivity

® Value proposition:
¢ 10x yourself!
® Remove 'drudge'!
¢ ...(mumbles)
¢ SPROFIT!
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Al for deve

® Value propos

10x yours
Remove'
. (mumbk

SPROFIT!
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Claude Code that helps them ship products 5x
faster.

| was amazed to see this person doing stuff in 1
hour that took me 5 hours

I'm happy to share the secret with you guys.
Here's how to get this guide:

1. Comment "Claude"

2. Send me a Connection Request

3. Let's connect and chat about how Al Agents can

speed up your coding

Let's connect )

Author: Riya Parikh [} Linkedin @ Blog €) GitHub

Senior Engineers Production Ready Battle Tested

& Critical Warning: 94% of engineers using Al assistants unknowingly introduce security vulnerabilities
and technical debt. This playbook teaches you to avoid these traps while maximizing productivity.
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Reality check

Al does improve developer productivity
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Reality check @ python’

...if you're in its wheelhouse

JavaScript
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Reality check

Small, constrained tasks; "bookwork"
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Reality check

Mechanical refactoring of code
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Reality check

Improves velocity, not competency!
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Reality check

Does not turn interns into senior devs
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Reality check

APL: improving (but must try harder)
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Pace of improvement: off charts
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Pace of improvement: off charts

¢ World looks different today from 38-menthsage last week
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Pace of improvement: off charts

¢ World looks different today from 38-menthsage last week
@ Claude Opus 4.1 perfectly capable of explaining APL code
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Pace of improvement: off charts

¢ World looks ¢ aday from 18menthsage last week
Latest LLM
¢ Claude Op capable of explaining APL code
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Pace of improvement: off charts

¢ World looks different today from 38-menthsage last week
@ Claude Opus 4.1 perfectly capable of explaining APL code

® Writes mostly correct APL in constrained domains
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Pace of improvement: off charts

¢ World looks different today from 38-menthsage last week
@ Claude Opus 4.1 perfectly capable of explaining APL code
® Writes mostly correct APL in constrained domains

0

18-24 months behind the curve
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Pace of improvement: off charts

World looks different today from 18-menthsage last week
Claude Opus 4.1 perfectly capable of explaining APL code
Writes mostly correct APL in constrained domains

18-24 months behind the curve

T

DVNA Fall 2025

A DYALOG USER MEETING




20

different benchmarks, we're talking about the same
sorts of nerdy things between LLMs.

Pace History Rhymes with Itself.

reply

Using Claude Opus 4, this was the first time I've :
gotten any of these models to produce functioning

Dyalog APL that does something relatively
complicated. And it actually runs without errors.
Crazy (at least to me).

reply

A energyl123 36 minutes ago | prev | next [—]

> Finally, we've introduced thinking
summaries for Claude 4 models that use a YNA Fall 2025
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Pace of improvement: off charts

.
@ Claude Opus 4.1 perfectly capable of explaining APL code
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adventofcode.com
Router A Lark IDE
Stefan Kruger 50%

--- Day 9: ALl in a Single Night ---
Every year, Santa manages to deliver all of his presents in a single night.

This year, however, he has some new locations to visit; his elves have
provided him the distances between every pair of locations. He can start
and end at any two (different) locations he wants, but he must wvisit each
location exactly once. What is the shortest distance he can travel to
achieve this?

For example, given the following distances:

London to Dublin = 464
London to Belfast = 518
Dublin toc Belfast = 141

The possible routes are therefore:
Dublin -> London -> Belfast
London -> Dublin -> Belfast
London -> Belfast -> Dublin
Dublin -> Belfast -> London

Belfast -> Dublin -> London =
Belfast -> London -> Dublin

The shortest of these is London -> Dublin -> Belfast
answer is 605 in this example.

What s the distance of the shortest route?

Your puzzle answer was 251.

Part Two ---

The next year, just to show off, Santa decides to take the route with the
longest distance instead.

He can still start and end at any two (different) locations he wants, and
he still must visit each location exactly once.

NA Fall 2025
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Start and end at any two (different) locations. Must visit each
location exactly once. What 1s the shortest distance?

Given the following distances:
London to Dublin = 464

London to Belfast = 518
Dublin to Relfast = 141

The shortest i1s London — Dublin — Belfast = 605

DVNA Fall 2025
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EICY 'dfns

data«' '(#cr) '(tol=)'0OR" 'oS[ONGET'datad9.txt'1

Day9+«({
weights«ew,wee '+/14
edges«(r59)28 26(vir), (tw)[31 2]
adj«weights@(Yedges)+0p=~2p8
(L/,[/)+/adi[V{ew}Bd1l 2rpmat 8]
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Looking at this APL solution for the Traveling Salesman Problem variant: 3. Create adjacency matrix —* Cl d

Data Preprocessing apl
apl adj¢weights@(ledges)0p~2p8
datac' '(#a-)"'( to | = )'[R" 'O[NGET'data9.txt'l

Creates an 8x8 zero matrix (for 8 cities) and places weights at positions specified by edge pairs.

This transforms each line from 'London to Dublin = 464' into 'London' 'Dublin' '464 4. Calculate path lengths forallpe utations

by replacing " to " and " =" with spaces, then splitting on spaces.
apl

The Core Algorithm
(L/,1/)+/adj[i{cu}dl 2-pmat 8]

1. Extract weights

- pmat 8 genejates all permutations of cities (1 through 8)

weightsew, wes /1o applies a 12 sliding window to get consecutive pairs in each permutation

e adj[L...] looksup the distance for each pair in the adjacency matrix
Takes the rightmost column (distances), converts strings to numbers, and doubles them

« +/ sums distances for each complete path
(since edges are bidirectional).

(L/, /) returnsboth minimum and maximum path lengths

2. Build edge list with city indices
The hardcoded values (28 for edges, 8 for cities) are specific to the actual problem input, not

2el B the test data. The algorithm finds all possible Hamiltonian paths through the graph and
edges«(F7$)28 2p(Uu-), (tw)[;1 2] returns both the shortest (251) and longest (898) distances.

s (tw)[;1 2] extractsthe city name pairs

elsthem into a single vector

ach city name to its index position among unique cities
apes into pairs (hardcoded for 14 undirected edges in the actual problem)

* (-7®) concatenates with reversed pairs to create bidirectional edges

DVNA Fall 2025
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Al Tooling: towards greater autonomy

Original Co-pilot: contextual auto-complete

Copy & paste Stack-Overflow ChatGPT
Al-integrated IDEs (Cursor, Zed, Windsurf...)

Console/cloud agents (Claude Code, Aider, Codex...)

¥ OO
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Al Tooling: Dyalog's Challenge

® Tightintegration into Dyalog Integrated Development
Environment (IDE)?

¢ Uncomfortably fast-moving goal posts
® Notinthe 'move fast & break things' camp!

@ Models still below-par for APL
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Console Agents + Link = Q@

@ Good match for Link-driven workflows
® Already watching for changes = fast feedback loop

@ No Ul overlays or chat panels in the Dyalog environment
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Console Agents

LLM in a loop + tools use in the CLI
Runs your whole tool chain: git, test runner, Cl
High autonomy: set it off, go for lunch

...come back to PR ready for review
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Console Agents

LLM in a loop + tools use in the CLI

Runs your whole tool ast runner, Cl

Suggested changes
to a project’s code

High autonomy: sé

...come back to PRZ/<ady for review
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Console Agents

LLM in a loop + tools use in the CLI

Runs your whole tool chain: git, test runner, Cl
High autonomy: set it off, go for lunch

...come back to PR ready for review

Visceral cost-benefit feedback
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Console

LLM in a
Runs you
High autc

...comek

Visceral ¢

4 files changed +196 -132 Undo ©

View all changes A

comparison.py +68 -54 v
equality.py +47 -24 v
reif.py +32 -8 o
builtins_clpfd.py +49 -46 Lt
Proceed

Failed

You've hit your usage limit. Upgrade to Pro
(https://openai.com/chatgpt/pricing) or try again in 38 minutes.

1 file changed Undo © View all changes A/

builtins_clpfd.py +14 -13 o
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Console Agents: Implications

Storing your code as text files
Ability to run APL from the command line

Everything accessible and introspectable via CLI

Rich error reporting
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Dyalog + Claude Code Agent

Al in cli-environment

Y Claude
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@ Solve the following problem in Dyalog APL. Note the data format -- you may assume

you have the data as:

data €< 'London to Dublin = 464' 'London to Belfast = 518' 'Dublin to Belfast = 141'

You need to parse this format.

Every year, Santa manages to deliver all of his presents in a single night.

This year, however, he has some new locations to visit; his elves have provided him the
distances between every pair of locations. He can start and end at any two (different)
locations he wants, but he must visit each location exactly once. What is the shortest

distance he can travel to achieve this?

For example, given the following distances:

London to Dublin = 464
London to Belfast = 518
Dublin to Belfast = 141

The possible routes are therefore:

Dublin — London — Belfast =
London — Dublin — Belfast =
London — Belfast — Dublin =
Dublin — Belfast — London =
Belfast — Dublin — London =
Belfast — London — Dublin =

What is the distance of the shortest route?

982
605
659
659
605
982

3 Claude
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parse <« {

}

parts « (w='=")cw

route « oparts

dist <« e(2¢parts)

cities « ((routez' '")a~(7260 0 1 1 0)¢=#route)croute
(ocities)(2dcities)dist

edges <« parse data
cities « uo,/(21) edges
n « #cities

dist « (n,n)p0

{

-

(cl c2 d) « w
i j « citiestcl c2
dist[i3j] « dist[jsi] « d

‘edges

w=0:
>, /{w, ' vV(ta)~w}/1w

pern e ¢ Claude

}

routes « perm n
routeDist <« {
w=8: 0
pairs « 2,/w
+/dist[>"pairs;>"¢pairs]
}
distances « routeDist routes
L/distances

37
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parse <« {

parts « (w="=")cw
route « oparts
dist « ¢(=¢parts)

cities « ((routez' '")a~(7260 0 1 1 0)¢=#route)croute

(ocities)(2pcities)dist

LENGTH ERROR
parse[4] cities«((route#’

(cl c2 d) « w
i j « citiestcl c2
dist[i33] « dist[jsi] « d

“edges

pern e ¢ Claude

w=0:
>, /{w, ' vV(wa)~w}/1w

}

routes « perm n
routeDist « {

'YA~(T200 0 1 1 0)d=#Zroute)croute

A

38
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@ Your solution has errors. | am curious about this line:
cities € ((route#' ')A~("200 0110)d=Skoute)croute

Can you tell me in more detail how you intended that to work?

Unraveled flawed code approach, acknowledged algorithmic misstep. 13s v

You're absolutely right to question that line - it's broken! I was trying to be clever about

splitting "London to Dublin" into ["London", "Dublin"] by removing " to ", but my approach
is fundamentally flawed.

What I was tryingto do:
1. (route#' ') -create amask of non-space characters

2. (6 8 1 1 08) -Ithoughtthiswasa patternfor"to"

3.Rotate and combine to exclude " to " from the partition

But this is wrong for multiple reasons:

e "t0"is 4 characters,not 5

» Rotating a fixed pattern by the string length makes no sense

39 e Even if the pattern were right, this wouldn't find where " to " occurs in the string !:lO/G\UIS:EEgQI ,I\AEEOT%,%
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Claude Code: Stacking the Deck  Claude

Carefully tuned instructions (CLAUDE.md)
Dyalog evaluation
APLCart lookup

Dyalog documentation

Console-only unit testing
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Visual Studio Code (VS Code)

[ N ] 51 ] ) Visual Studio Code - Code Editi X+ -
&« C 08 ) code visualstudio.com < 0 &2 & =
G (% | ) xpaz € Dyaloa eams $Ycss @ print-css c[ & pDocumentation X7 GitGuide @HDFNS Pohm B @ Rride EZlProse @ wiki Router @ LarkIDE ) D20 & Branches (1) [Dyalo...

> P Download

)Q Visual Studio Code Docs Updates Blog APl Extensions MCP FAQ Dev Days D O search Docs

Join a VS Code Dev Days event near you to learn about Al-assisted development in VS Code.

The open source
Al code editor

@ EXPLORER

* HIKING-JOURNAL
v docs
¥ functionality.md
Zy > journal-enteries
4 1 .  website
g &

<> index.html

@ Download for macOS

Web, Insiders edition, or other platforms

By using VS Code, you agree to its license and privacy statement.

Y 2 hiking-journal

> index.html x m

<!DOCTYPE html=
<html lang="en"=
<head=
<meta charset="UTF-g">
<meta name="viewport" content="width=device-width, initial-scale=1.!
<titlesHiking Journale/title>
<link rel="stylesheet" href="styles.css">
<link rel="preconnect" href="https://fonts.googleapis, con'>

v | Ay =Rni
CHAT + D

collection to make the font styles.

# GitHub Copilot

A Fall 2025
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I'll help you create the landing page based on the Figma
design. Let me first check the Figma design and then

create the necessary files.




P & P prna =3 EDBE0
¥ task-1md M X test_solution.apin @ README.md day9.aplf yoA® B % a1t O - Preview task-1.md %
¥ task-1.md > (= # Task 1 > [ ## Advent of Code, day 9 2015, part 1 > (& ### Guidance
i # Task 1 Task1
2
3 ## Advent of Code, day 9 2015, part 1
" Advent of Code, day 9 2015, part1
5 Every year, Santa manages to deliver all of his presents in a single night.
6 Every year, Santa manages to deliver all of his presents in a single night.
7 This year, however, he has some new locations te visit; his elves have This year, however, he has some new locations to visit; his elves have provided him the distances between every pair of locations.

provided him the distances between every pair of locations. He
end at any two (different) locations he wants, but he mus

He can start and end at any two (different) locations he wants, but he must visit each location exactly once. What is the shortest
& he can travel to achieve this?

location exactly once. What is the shortest distance hg

. . given the following distances:
achieve this? 9

Problem text

8

9 For example, given the following distances: 0 Dublin = L&k
10 to Belfast = 518
ITEERE n to Belfast = 1hl

@ O=8 & VE v

12 London to Dublin = 464

13 London to Belfast = 518 The possible routes are therefore:

B

1% Dublin to Belfast = 141
@ 15 *** Dublin -> London -> Belfast = 982
: Londen -> Dublin -> Belfast = 605
16 T f :
‘T? possible routes are therefore Loy =& DOMCE = i0in = 630
@ 17 Dublin -> Belfast -> London = 659
18 Dublin -> London -> Belfast = 982 Belfast -> Dublin -> London = 605
@ 19 London -> Dublin -> Belfast = 605 Belfast -> London -> Dublin = 982
20 London -> Belfast -> Dublin = 659
21 Dublin -> Belfast -> London = 659 What is the distance of the shortest route?
22 Belfast -> Dublin -> London = 605
23 Belfast -> London -> Dublin = 982 Guidance
PR
25 What is the distance of the shortest route? = The full data for this problem can be found as data/taski-1.md.
26 = Implement a sclution to this problem as a single dfn. See the skeleton src/day9.aplf.
= Outline tests are present in test/test_solution.apln.
27 ### Guidance
28

29%- The full data for this problem can be found as ‘data/taski-1.md".
30;- Implement a solution to this problem as a single dfn. See the skeleton

H
g‘srcldﬂylaglf‘.
31 - Outline tests are present in ‘test/test_solut‘lon.gw‘.
2

& ©

}* mai

®0A0DS55 @ LiveShare Git Graph Ln 30, Col 80 Spaces

UTF-8

() Markdown & 0 A Fa” 2025

42 A DYALOG USER MEETING




test_given_example « {
data « 'London to Dublin = 464' 'London to Belfast = 518' 'Dublin to Belfast = 141
expected « 605

result « #.Day9 data
‘Wrong result'#.dytest.Assert result
1

expected:

}

test_solution « {

‘Wrong result #.dytest.Assert result expected:

DVNA Fall 2025
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2 Claude
Two prompts only

® Read the task description in task-1.md. Outline a solution
in PLAN.md, and let's review.

® Proceed with implementing your plan. Ensure to
implement tests for intermediate steps, or ad-hoc testing
with the 'dyalogscript’ tool.

® [goes for lunch]

DVNA Fall 2025
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¥ task-1.md M

sy O DYNA

test_solution.apin @ README.md ¥ PLAN.mMd U X day9.aplf @ I ¥ a1t O -

¥ PLAN.md > [ # Solution Plan for Task 1 - Traveling Salesman Problem (TSP)

2
3
y
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
2k
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

& 0= 8 & Y E o

@ @ B

5]

®
)

1 H Solution Plan for Task L - Traveling Salesman Problem (TSP)

## Problem Analysis

This is a classic Traveling Salesman Problem (TSP) where we need to:
1. Visit each city exactly once

2. Find the shortest possible route

3. Can start and end at any two different cities

## Solution Approach

### Data Parsing
1. Parse input lines in format "Cityl to City2 =
2. Extract unique city names

3. Build a distance matrix or lookup structure

Distance"

### Algorithm Options

#### Option A: Brute Force with 9553 Permutations (Recommended for small datasets)
‘M' from m workspace to generate all permutations

- Calculate total distance for each permutation

- Return minimum distance

- *%Pros#**: Simple, guaranteed optimal, leverages existing dfns

- =xCons**: O(n!) complexity, only viable for small n (< 10-12 cities)

- Use

#### Option B: Build Custom TSP Solver

- Implement dynamic programming with bitmasks

- Or use nearest neighbor heuristic

- »xPros»x: More scalable

= **Cons**: Complex implementation, may not be needed for small dataset

### Recommended Implementation Steps

»*Parse input dataxx
- Use regex “'(\w+) to (\w+) = (\d+)'" to extract cities and distances
- Create bidirectional edge map (A+B and B+A have same distance)

**Build distance matrix»x

- Map city names to indices

- Create nxn matrix where matrix[i,j] = distance from city i to city j

- Use 0 or = for non-connected pairs (though problem implies all pairs are
given)

- $emain* & @0M0@69 4 LiveShare Git Graph

=]

3
<

DB

¥ Claude Code x 8 -

® Read(coderules.md)
L Read 36 lines (ctrl+o to expand)

L] Acknowledgment of Code Rules

I have read and understood ALL mandatery coding rules in coderules.md. I will
enforce them absolutely without exception throughout our session:

Key Rules I'll Enforce:

- NEVER claim completion with regressions - Run full test suite befere/after each
work unit

- Use dfn syntax over tradfns, write TERSE APL code

- Practice TDD - Tests first, implementation follows

- Use APLCart MCP liberally for APL idioms

- Use Dyalog-script MCP for testing snippets

- NEVER invent O system functions - Verify against
docs/reference/dyalog_system_functions.md

- No temp files outside repo, clean up debug scripts

- Create new git branches for development stages

These rules are BINDING and OVERRIDE all default behaviors. I will treat any
violation as a critical error.

Ready to proceed with strict compliance to these rules.

Read the task description in task-1.md. Outline a solution in PLAN.md, and let's
review.

I'll read the task description and create a solution plan.

Read(task-1.md)
| Read 32 lines (ctrl+o to expand)

Write(PLAN.md)
| Wrote 74 lines to PLAN,md
# Solution Plan for Task 1 - Traveling Salesman Problem (TSP)
## Problem Analysis
This is a classic Traveling Salesman Problem (TSP) where we need to:
1. Visit each city exactly once
2. Find the shortest possible route
3. Can start and end at any two different cities
## Solution Approach
. +6% lines (ctrl+o to expand)

® Solution plan created in PLAN.md. The approach uses brute force with dfns' pmat
function to generate all permutations, which is optimal for this small TSP problem.

»» accept edits on (shift+tab to cycle) ]
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¥ task-1.md M

sy O DYNA

test_solution.apin @ README.md ¥ PLAN.md U X day9.aplf @ I ¥ a1t O -

¥ PLAN.md > [ # Solution Plan for Task 1 - Traveling Salesman Problem (TSP)

2
3
y
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
2k
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

& 0= 8 & Y E o

@ @ B

5]

®
)

1 H Solution Plan for Task L - Traveling Salesman Problem (TSP)

## Problem Analysis

This is a classic Traveling Salesman Problem (TSP) where we need to:
1. Visit each city exactly once

2. Find the shortest possible route

3. Can start and end at any two different cities

## Solution Approach

### Data Parsing
1. Parse input lines in format "Cityl to City2 =
2. Extract unique city names

3. Build a distance matrix or lookup structure

Distance"

### Algorithm Options

#### Option A: Brute Force with 9553 Permutations (Recommended for small datasets)
‘M' from m workspace to generate all permutations

- Calculate total distance for each permutation

- Return minimum distance

- *%Pros#**: Simple, guaranteed optimal, leverages existing dfns

- =xCons**: O(n!) complexity, only viable for small n (< 10-12 cities)

- Use

#### Option B: Build Custom TSP Solver

- Implement dynamic programming with bitmasks

- Or use nearest neighbor heuristic

- =xxProsx»: More scalable

- *xCons**: Complex implementation, may not be needed for small dataset

### Recommended Implementation Steps

»*Parse input dataxx
- Use regex “'(\w+) to (\w+) = (\d+)'" to extract cities and distances
- Create bidirectional edge map (A+B and B+A have same distance)

**Build distance matrix»x

- Map city names to indices

- Create nxn matrix where matrix[i,j] = distance from city i to city j

- Use 0 or = for non-connected pairs (though problem implies all pairs are
given)

- $emain* & @0M0@69 4 LiveShare Git Graph

=]

3
<

DB

¥ Claude Code x 8 -

® Read(coderules.md)
[ Read 36 Lines (ctrl+o to expand)

L] Acknowledgment of Code Rules

I have read and understood ALL mandatery coding rules in coderules.md. I will
enforce them absolutely without exception throughout our session:

Key Rules I'll Enforce:

- NEVER claim completion with regressions - Run full test suite befere/after each
work unit

- Use dfn syntax over tradfns, write TERSE APL code

- Practice TDD - Tests first, implementation follows

- Use APLCart MCP liberally for APL idioms

- Use Dyalog-script MCP for testing snippets

- NEVER invent O system functions - Verify against
docs/reference/dyalog_system_functions.md

- No temp files outside repo, clean up debug scripts

- Create new git branches for development stages

These rules are BINDING and OVERRIDE all default behaviors. I will treat any
violation as a critical error.

Ready to proceed with strict compliance to these rules.

v

Read the task description in task-1.md. Outline a solution in PLAN.md, and let's
review.

I'll read the task description and create a solution plan.

Read(task-1.md)
| Read 32 lines (ctrl+o to expand)

Write(PLAN.md)
| Wrote 74 lines to PLAN,md
# Solution Plan for Task 1 - Traveling Salesman Problem (TSP)
## Problem Analysis
This is a classic Traveling Salesman Problem (TSP) where we need to:
1. Visit each city exactly once
2. Find the shortest possible route
3. Can start and end at any two different cities
## Solution Approach
. +6% lines (ctrl+o to expand)

® Solution plan created in PLAN.md. The approach uses brute force with dfns' pmat
function to generate all permutations, which is optimal for this small TSP problem.

»b» accept edits on (shift+tab to cycle) o
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¥ task-1.md M test_solution.apin @ README.md ¥ PLANMd U X day9.aplf @ @ ¥ ath O

¥ PLAN.md > [ # Solution Plan for Task 1 - Traveling Salesman Problem (TSP)
1 H Solution Plan for Task L - Traveling Salesman Problem (TSP)

2

3 ## Problem Analysis

4 This is a classic Traveling Salesman Problem (TSP) where we need to:
5 1. Visit each city exactly once

6 2. Find the shortest possible route

7 3. Can start and end at any two different cities

8

9 ## Solution Approach

10

11 ### Data Parsing

12 1. Parse input lines in format "Cityl to City2 =
13 2. Extract unique city names

it 3. Build a distance matrix or lookup structure
15

16 ### Algorithm Options

17

18 #### Option A: Brute Force with ﬂﬂﬂi Permutations (Recommended for small datasets)
19 - N . N

Distance"
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® Read(coderules.md)
L Read 36 lines (ctrl+o to expand)

® U Acknowledgment of Code Rules

I have read and understood ALL mandatery coding rules in coderules.md. I will
enforce them absolutely without exception throughout our session:

Key Rules I'll Enforce:

- NEVER claim completion with regressions - Run full test suite befere/after each
work unit

- Use dfn syntax over tradfns, write TERSE APL code |
- Practice TOD - Tests first, implementation follows |
- Use APLCart MCP liberally for APL idioms

- Use Dyalog-script MCP for testing snippets

- NEVER invent [ system functions - Verify against
docs/reference/dyalog_system_functions.md

- No temp files outside repo, clean up debug scripts
- Create new git branches for development stages

These rules are BINDING and OVERRIDE all default behaviors. I will treat any
violation as a critical error.

Qutline a solution in PLAN.md, and let's

20 -

> | > Read the task description in task-1.md.
23 - reviewv.

2L

25 #### Option B: Build Custom TSP Solver

26 - Implement dynamic programming with bitmasks

27 - Or use nearest neighbor heuristic

28 - =xPros*x: More scalable

29 - xxCons**: Complex implementation, may not be needed for small dataset

30

31 ### Recommended Implementation Steps

32

33 1. =xParse input datax=

34 - Use regex “'(\w+) to (\w+) = (\d+)'® to extract cities and distances

35 - Create bidirectional edge map (A+B and B+A have same distance)

36

37 2. »*Build distance matrixsx

38 - Map city names to indices

39 - Create nxn matrix where matrix[i,j] = distance from city i to city j

40 -~ Use 0 or = for non-connected pairs (though problem implies all pairs are

given)
®0MA0D63 4 Live Share  Git Graph

R ReTIme Y
L Read 32 lines (ctrl+o to expand)

® Write(PLAN.md)

| Wrote 74 lines to PLAN.md |
# Solution Plan for Task 1 - Traveling Salesman Problem (TSP)
## Problem Analysis
This is a classic Traveling Salesman Problem (TSP) where we need to:
1. Visit each city exactly once
2. Find the shortest possible route
3. Can start and end at any two different cities
## Solution Approach
. +6% lines (ctrl+o to expand)

® Solution plan created in PLAN.md. The approach uses brute force with dfns' pmat
function to generate all permutations, which is optimal for this small TSP problem.

»b» accept edits on (shift+tab to cycle)
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1 @ Solution Plan for Task 1 - Traveling Salesman Problem (TSP)

2

## Problem Analysis
This is a classic Traveling Salesman Problem (TSP) where we need to:
1. Visit each city exactly once

3. Can start and end at any two different cities

O DYNA

3
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¥ Claude Code %

® Read(coderules.md)
[ Read 36 Lines (ctrl+o to expand)

® U Acknowledgment of Code Rules

I have read and understood ALL mandatery coding rules in coderules.md. I will
enforce them absolutely without exception throughout our session:

Key Rules I'll Enforce:

DB

3
y
5
6 2. Find the shortest possible route
7
8

] - NEVER claim completion with regressions - Run full test suite befere/after each
work unit

- Use dfn syntax over tradfns, write TERSE APL code

- Practice TDD - Tests first, implementation follows

- Use APLCart MCP liberally for APL idioms

9 ## Solution Approach
10 |
11 ### Data Parsing

& 0= 8 & Y E o

12 1. Parse input lines in format "Cityl to City2 = Distance" - Use Dyalog-script MCP for testing snippets
13 2. Extract unique city names - NEVER invent O system functions - Verify against
it 3. Build a distance matrix or lookup structure docs/refere?cefdvaLog_system_functinns.md N
- No temp files outside repo, clean up debug scripts
15 - Create new git branches for development stages
16 ### Algorithm Options 1
E% 17 These rules are BINDING and OVERRIDE all default behaviors. I will treat any

18 #### Option A: Brute Force with valzlj Permutations (Recommended for small datasets) violation as a critical error.

® 19 - Use “pmat’ from dfns workspace to generate all permutations Ready to proceed with strict compliance to these rules.
20 - Calculate total distance for each permutaticn

ﬁﬁ 21 - Return minimum distance > E:j?e:he task description in task-1.md. Outline a solution in PLAN.md, and let's
22 - *x#Prosx*: Simple, guaranteed optimal, leverages existing dfns )

@ 23 - #xCons**: O(n!) complexity, only viable for small n (< 10-12 cities) ® I'Ll read the task description and create a solution plan.
2L

Read(task-1.md)

25 #### Option B: Build Custom TSP Solver | Read 32 lines (ctriso to expand)

26 - Implement dynamic programming with bitmasks f
27 - Or use nearest neighbor heuristic ® Write(PLAN.md)
28 - xxProssx: More scalable | Wrote 74 lines to PLAN.md
29 - xxCons**: Complex implementation, may not be needed for small dataset # Solution Plan f?r Task 1 - Traveling Salesman Problem (TSP)
## Problem Analysis
30 This is a classic Traveling Salesman Problem (TSP) where we need to:
31 ### Recommended Implementation Steps 1. Visit each city exactly once
32 2. Find the shortest possible route
33 1. =sParse input dataxs 3. Can sFart and end at any two different cities
## Solution Approach
34 - Use regex “'(\w+) to (\w+) = (\d+)'" to extract cities and distances . +64 Llines (ctrl+o to expand)
35 - Create bidirectional edge map (A+B and B+A have same distance)
36 ® Solution plan created in PLAN.md. The approach uses brute force with dfns' pmat
37 2. waBuild distance matrixss function to generate all permutations, which is optimal for this small TSP problem.
38 - Map city names to indices
@9 39 - Create nxn matrix where matrix[i,j] = distance from city i to city j >
40 - Use 0 or = for non-connected pairs (though problem implies all pairs are . L
{% given) »b» accept edits on (shift+tab to cycle) o

- $emain* & @0M0@69 4 LiveShare Git Graph
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1Te @ Acknowledgment of Code Rules

I have read and understood ALL mandatory coding rules in coderules.md. I will
) enforce them absolutely without exception throughout our session:

!

d Key Rules I'lLl Enforce:
- NEVER claim completion with regressions - Run full test suite before/after each
work unit

. - Use dfn syntax over tradfns, write TERSE APL code

i - Practice TDD - Tests first, implementation follows

- Use APLCart MCP liberally for APL idioms

- Use Dyalog-script MCP for testing snippets

- NEVER invent [ system functions - Verify against

1 docs/reference/dyalog_system_functions.md

- No temp files outside repo, clean up debug scripts
- Create new git branches for development stages

These rules are BINDING and OVERRIDE all default behaviors. I will treat any
violation as a critical error.

Ready to proceed with strict compliance to these rules.

E="Wap CTiy Names to Inaices
@ 39 - Create nxn matrix where matrix[i,j] = distance from city i to city j

40 - Use 0 or = for non-connected pairs (though problem implies all pairs are . . .
{% given) »b» accept edits on (shift+tab to cycle) o
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1
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3
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5
6
7
8

9
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11
12
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16
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H Solution Plan for Task L - Traveling Salesman Problem (TSP)

## Problem Analysis

This is a classic Traveling Salesman Problem (TSP) where we need to:

1. Visit each city exactly once

2. Find the shortest possible route

3. Can start and end at any two different cities |

## Solution Approach

### Data Parsing

1. Parse input lines in format "Cityl to City2 = Distance"

2. Extract unique city names

3. Build a distance matrix or lookup structure

### Algorithm Options 1

G @ @ @

#### Option A: Brute Force with 9553 Permutations (Recommended for small datasets)
‘Eﬂﬁ&‘ from 9521 workspace to generate all permutations

- Calculate total distance for each permutation

- Return minimum distance

- *%Pros#**: Simple, guaranteed optimal, leverages existing dfns

- =xCons**: O(n!) complexity, only viable for small n (< 10-12 cities)

- Use

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

®
)

#### Option B: Build Custom TSP Solver

- Implement dynamic programming with bitmasks

- Or use nearest neighbor heuristic

- *%Prosxx: More scalable

- *xCons**: Complex implementation, may not be needed for small dataset

### Recommended Implementation Steps

1. *xxParse input dataxx
- Use regex “'(\w+) to (\w+) = (\d+)'" to extract cities and distances
- Create bidirectional edge map (A+B and B+A have same distance)
2. *»*Build distance matrixsx
- Map city names to indices
- Create nxn matrix where matrix[i,j] = distance from city i to city j
-~ Use 0 or = for non-connected pairs (though problem implies all pairs are

given)

- $emain* & @0M0@69 4 LiveShare Git Graph
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® Read(coderules.md)
[ Read 36 Lines (ctrl+o to expand)

® U Acknowledgment of Code Rules

I have read and understood ALL mandatery coding rules in coderules.md. I will
enforce them absolutely without exception throughout our session:

Key Rules I'll Enforce:

- NEVER claim completion with regressions - Run full test suite befere/after each
work unit

- Use dfn syntax over tradfns, write TERSE APL code

- Practice TDD - Tests first, implementation follows

- Use APLCart MCP liberally for APL idioms

- Use Dyalog-script MCP for testing snippets

- NEVER invent [ system functions - Verify against
docs/reference/dyalog_system_functions.md

- No temp files outside repo, clean up debug scripts

- Create new git branches for development stages

These rules are BINDING and OVERRIDE all default behaviors. I will treat any
violation as a critical error.

Ready to proceed with strict compliance to these rules.

v

Read the task description in task-1.md. Outline a solution in PLAN.md, and let's
review.

I'll read the task description and create a solution plan.

Read(task-1.md)
| Read 32 lines (ctrl+o to expand)

Write(PLAN.md)
| Wrote 74 lines to PLAN,md
# Solution Plan for Task 1 - Traveling Salesman Problem (TSP)
## Problem Analysis
This is a classic Traveling Salesman Problem (TSP) where we need to:
1. Visit each city exactly once
2. Find the shortest possible route
3. Can start and end at any two different cities
## Solution Approach
. +6% lines (ctrl+o to expand)

® Solution plan created in PLAN.md. The approach uses brute force with dfns' pmat
function to generate all permutations, which is optimal for this small TSP problem.

»b» accept edits on (shift+tab to cycle) o
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¥ task-1.md M test_solution.apln @ README.md ¥ PLAN.mMd U X day9.aplf @ I} ¥ @ 1) @ - ¥ Claude Code x 8 -
¥ PLAN.md > & # Solution Plan for Task 1 - Traveling Salesman Problem (TSP) ® Read(coderules.md)
;) 1 H Solution Plan for Task L - Traveling Salesman Problem (TSP) B | Read 36 lines (ctrl+o to expand)
]
2
® [ Acknowled: t of Code Rul
I,% 3 ## Problem Analysis © Acknowledgment of Code Rules
4 This is a classic Traveling Salesman Problem (TSP) where we need to: I have read and understood ALL mandatery coding rules in coderules.md. I will
f;> 5 1. Visit each city exactly once enforce them absolutely without exception throughout our session:
6 2. Find the shortest possible route ,
Key Rules I'll Enforce:
E% 7 3. Can start and end at any two different cities |
8 ] - NEVER claim completion with regressions - Run full test suite befere/after each
E% 9 ## Solution Approach work unit
- 10 | - Use dfn syntax over tradfns, write TERSE APL code
- Practice TOD - Tests first, implementation follows
A8 11 ### Data Parsing

—Use APLCart MCP liberally for APL_idjoms
#### Option A: Brute Force with dfns Permutations (Recommended for small datasets)
- Use “pmat® from dfns workspace to generate all permutations

- Calculate total distance for each permutation
- Return minimum distance
- *xProsxx: Simple, guaranteed optimal, leverages existing dfns

- xxConsx*x*x: O(n!) complexity, only viable for small n (< 10-12 cities)

27 - Or use nearest neighbor heuristic ® Write(PLAN.md)
28 - sxPross»: More scalable | Wrote 74 lines to PLAN.md
29 - xxCons**: Complex implementation, may not be needed for small dataset # Solution Plan for Task 1 - Traveling Salesman Problem (TsP)

## Problem Analysis

30 This is a classic Traveling Salesman Problem (TSP) where we need to:
31 ### Recommended Implementation Steps 1. Visit each city exactly once
32 2. Find the shortest possible route
N 3. Can start and end at any two different cities
33 1. =xParse input datax= ## Solution Approach ¥
34 - Use regex “'(\w+) to (\w+) = (\d+)'" to extract cities and distances . +64 Llines (ctrl+o to expand)
35 - Create bidirectional edge map (A+B and B=A have same distance)
36 ® Solution plan created in PLAN.md. The approach uses brute force with dfns' pmat

37 2. waBuild distance matrixss function to generate all permutations, which is optimal for this small TSP problem.

38 - Map city names to indices

@ 39 - Create nxn matrix where matrix[i,j] = distance from city i to city j >
40 - Use 0 or = for non-connected pairs (though problem implies all pairs are A . .
{% given) »b» accept edits on (shift+tab to cycle) [e]
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28
29
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1 H Solution Plan for Task L - Traveling Salesman Problem (TSP)

## Problem Analysis

This is a classic Traveling Salesman Problem (TSP) where we need to:
1. Visit each city exactly once

2. Find the shortest possible route

3. Can start and end at any two different cities

## Solution Approach

### Data Parsing
1. Parse input lines in format "Cityl to City2 =
2. Extract unique city names

3. Build a distance matrix or lookup structure

Distance"

### Algorithm Options

#### Option A: Brute Force with 9553 Permutations (Recommended for small datasets)
‘M' from m workspace to generate all permutations

- Calculate total distance for each permutation

- Return minimum distance

- *%Pros#**: Simple, guaranteed optimal, leverages existing dfns

- =xCons**: O(n!) complexity, only viable for small n (< 10-12 cities)

- Use

#### Option B: Build Custom TSP Solver

- Implement dynamic programming with bitmasks

- Or use nearest neighbor heuristic

- »xPros»x: More scalable

= **Cons**: Complex implementation, may not be needed for small dataset

### Recommended Implementation Steps

»*Parse input dataxx
- Use regex “'(\w+) to (\w+) = (\d+)'" to extract cities and distances
- Create bidirectional edge map (A+B and B+A have same distance)

**Build distance matrix»x

- Map city names to indices

- Create nxn matrix where matrix[i,j] = distance from city i to city j

- Use 0 or = for non-connected pairs (though problem implies all pairs are
given)

- $emain* & @0M0@69 4 LiveShare Git Graph
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® Read(coderules.md)
L Read 36 lines (ctrl+o to expand)

L] Acknowledgment of Code Rules

I have read and understood ALL mandatery coding rules in coderules.md. I will
enforce them absolutely without exception throughout our session:

Key Rules I'll Enforce:

- NEVER claim completion with regressions - Run full test suite befere/after each
work unit

- Use dfn syntax over tradfns, write TERSE APL code

- Practice TDD - Tests first, implementation follows

- Use APLCart MCP liberally for APL idioms

- Use Dyalog-script MCP for testing snippets

- NEVER invent O system functions - Verify against
docs/reference/dyalog_system_functions.md

- No temp files outside repo, clean up debug scripts

- Create new git branches for development stages

These rules are BINDING and OVERRIDE all default behaviors. I will treat any
violation as a critical error.

Ready to proceed with strict compliance to these rules.

Read the task description in task-1.md. Outline a solution in PLAN.md, and let's
review.

I'll read the task description and create a solution plan.

Read(task-1.md)
| Read 32 lines (ctrl+o to expand)

Write(PLAN.md)
| Wrote 74 lines to PLAN,md
# Solution Plan for Task 1 - Traveling Salesman Problem (TSP)
## Problem Analysis
This is a classic Traveling Salesman Problem (TSP) where we need to:
1. Visit each city exactly once
2. Find the shortest possible route
3. Can start and end at any two different cities
## Solution Approach
. +6% lines (ctrl+o to expand)

® Solution plan created in PLAN.md. The approach uses brute force with dfns' pmat
function to generate all permutations, which is optimal for this small TSP problem.

»» accept edits on (shift+tab to cycle) ]
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¥ PLAN.md > (& # Solution Plan for Task 1 - Traveling Salesman Problem (TSP)
1 # Solution Plan for Task 1 - Traveling Salesman Problem (TSP)
2
## Problem Analysis
This is a classic Traveling Salesman Problem (TSP) where we need to:
1. Visit each city exactly once
2. Find the shortest possible route
3. Can start and end at any two different cities

0 ® N o F oW

## Solution Approach

10

11 ### Data Parsing

12 1. Parse input lines in format "Cityl to City2 =
13 2. Extract unique city names

14 3.
15

16 ### Algorithm Options

17

18 #### Option A: Brute Force with 2555 Permutations (Recommended for small datasets)
19 - Use ‘Ew' from m workspace to generate all permutations

Distance"

Build a distance matrix or lookup structure

O =8 TE oD

® @

20 - Calculate total distance for each permutation

ﬁﬁ 21 - Return minimum distance
22 - #*Pros*»: Simple, guaranteed optimal, leverages existing dfns

§§§ 23 - **xConsx*: O(n!) complexity, only viable for small n (< 10-12 cities)
24

25 #### Option B: Build Custom TSP Solver

26 - Implement dynamic programming with bitmasks

27 - Or use nearest neighbor heuristic

28 - =xProsxx: More scalable

29 - *%Cons**: Complex implementation, may not be needed for small dataset
30

31 ### Recommended Implementation Steps

32

33 1. =xParse input data=x

34 - Use regex “'(\w+) to (\w+) = (\d+)'" to extract cities and distances
35 - Create bidirectional edge map (A+B and B+A have same distance)

36

37 2. *=Build distance matrix=»

38 - Map city names to indices

39 - Create nxn matrix where matrix[i,j] = distance from city i to city j
40 - Use 0 or = for non-connected pairs (though problem implies all pairs are

given)
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Now let me check how to use APLCart to find useful patterns:
Let me search APLCart for useful patterns:

aplcart - semantic-search (MCP)(query: "parse string with regex extract groups”, limit:
5)

L1
"query": "parse string with regex extract groups"”,
"results": [
. +162 lines (ctrl+o to expand)

aplcart - semantic-search (MCP)(query: "split string on spaces partition", limit: 3)
LA

"query": "split string on spaces partition",
"results":
. +79 lines (ctrl+o to expand)

aplcart - search (MCP)(query: "partition split", Llimit: 5)

aplcart - semantic-search (MCP)(query: "consecutive pairs windowed", limit: 3)
L{

"query": "consecutive pairs windowed",

"results": [

. +67 lines (ctrl+o to expand)
Let me test parsing with Dyalog script MCP:

dyalog-script - execute_apl (MCP)(code: "A Test parsing a single line\nline « 'London
to Dublin = 464%'\n\na Use OS to extract groups with
regex\npattern « '(\\w+) to (\\w+) = (\\d+)'\nresult «
pattern 05 {w.(14Lengthst Offsetsds cBlock)}
~line\n[+'Parsed: '\nD«result")
L1
"output":
"error’:
. +6 lines (ctri+o to expand)

"Parsed:\n London Dublin &é% ",

Good! Now let's test parsing multiple lines and building unique cities:
Writing tests for parsing input data. (esc to interrupt ctrli+t to hide todos)
0 Write tests for parsing input data

O Write tests for building distance matrix

O Write tests for calculating route distances

O Implement Day9 function to pass tests

O Run full test suite

»» accept edits on (shift+tab to cycle) s}
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¥ PLAN.md > (& # Solution Plan for Task 1 - Traveling Salesman Problem (TSP)
1 # Solution Plan for Task 1 - Traveling Salesman Problem (TSP)
2
## Problem Analysis
This is a classic Traveling Salesman Problem (TSP) where we need to:
1. Visit each city exactly once
2. Find the shortest possible route
3. Can start and end at any two different cities

0 ® N o F oW

## Solution Approach

11 ### Data Parsing

12 1. Parse input lines in format "Cityl to City2 = Distance"
13 2. Extract unique city names
ik 3. Build a distance matrix or lookup structure

O =8 TE oD

16 ### Algorithm Options

=
3

18 #### Option A: Brute Force with 2555 Permutations (Recommended for small datasets)
19 - Use ‘Ew' from m workspace to generate all permutations

20 - Calculate total distance for each permutation

21 - Return minimum distance

22 - #*Pros*»: Simple, guaranteed optimal, leverages existing dfns

23 - **xConsx*: O(n!) complexity, only viable for small n (< 10-12 cities)

24

25 #### Option B: Build Custom TSP Solver

26 - Implement dynamic programming with bitmasks

27 - Or use nearest neighbor heuristic

28 - =xProsxx: More scalable

29 - *xCons**:

8 @

9]

Complex implementation, may not be needed for small dataset

30
31 ### Recommended Implementation Steps
32
33 1. =xParse input data=x
34 - Use regex “'(\w+) to (\w+) = (\d+)'" to extract cities and distances
35 - Create bidirectional edge map (A+B and B+A have same distance)
36
37 2. *=Build distance matrix=»
38 - Map city names to indices
@D 39 - Create nxn matrix where matrix[i,j] = distance from city i to city j
40 - Use 0 or = for non-connected pairs (though problem implies all pairs are

given)
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Now let me check how to use APLCart to find useful patterns:

.

Let me search APLCart for useful patterns:

aplcart - semantic-search (MCP)(query: "parse string with regex extract groups", Llimit:
5)

L1
"query": "parse string with regex extract groups"”,
"results": [
. +162 lines (ctrl+o to expand)

aplcart - semantic-search (MCP)(query: "split string on spaces partition", limit: 3)
L1
"query": "split string on spaces partition",
"results"”
. +79 lines (ctrl+o to expand)
aplcart - search (MCP)(query: "partition split", Llimit: 5)
"consecutive pairs windowed", limit: 3)

aplcart - semantic-search (MCP)(query:
L{
"query": "consecutive pairs windowed",
"results": [
. +67 lines (ctrl+o to expand)

*

>

Let me test parsing with Dyalog script MCP:

dyalog-script - execute_apl (MCP)(code: "A Test parsing a single line\nline « 'London
to Dublin = 464%'\n\na Use OS to extract groups with
regex\npattern « '(\\w+) to (\\w+) = (\\d+)'\nresult «
pattern 05 {w.(14Lengthst Offsetsds cBlock)}
~line\n[+'Parsed: '\nD«result")
L1
"output":
"error’:
. +6 lines (ctri+o to expand)

"Parsed:\n London Dublin &é% ",

Good! Now let's test parsing multiple lines and building unique cities:

Writing tests for parsing input data. ctrli+t to hide todos)

(esc to interrupt

0 Write tests for parsing input data

O Write tests for building distance matrix

O Write tests for calculating route distances
O Implement Day9 function to pass tests

O Run full test suite

»» accept edits on (shift+tab to cycle)
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Let me search APLCart for useful patterns:

aplcart - semantic-search (MCP)(query: "parse string with regex extract groups", limit:

5)
L {
"query": "parse string with regex extract groups",
"results": [
. +162 lines (ctrl+o to expand)

aplcart - semantic-search (MCP)(query: "split string on spaces partition", limit: 3)

L«
"query": "split string on spaces partition",
"results": [
. +79 lines (ctrl+o to expand)

aplcart - search (MCP)(query: "partition split", limit: 5)

aplcart - semantic-search (MCP)(query: "consecutive pairs windowed", limit: 3)

L«
"query": "consecutive pairs windowed",
"results": [
. +67 lines (ctrl+o to expand)
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¥ task-1.md M @ ¥ PLAN.md U % L4
¥ PLAN.md > (& # Solution Plan for Task 1 - Traveling Salesman Problem (TSP)
1 # Solution Plan for Task 1 - Traveling Salesman Problem (TSP)
2
## Problem Analysis
This is a classic Traveling Salesman Problem (TSP) where we need to:
1. Visit each city exactly once
2. Find the shortest possible route
3. Can start and end at any two different cities

0 ® N o F oW

## Solution Approach

11 ### Data Parsing

12 1. Parse input lines in format "Cityl to City2 = Distance"
13 2. Extract unique city names
ik 3. Build a distance matrix or lookup structure

O =8 TE oD

16 ### Algorithm Options

=
3

18 #### Option A: Brute Force with 2555 Permutations (Recommended for small datasets)
19 - Use ‘Ew' from m workspace to generate all permutations

20 - Calculate total distance for each permutation

21 - Return minimum distance

22 - #*Pros*»: Simple, guaranteed optimal, leverages existing dfns

23 - **xConsx*: O(n!) complexity, only viable for small n (< 10-12 cities)

24

25 #### Option B: Build Custom TSP Solver

26 - Implement dynamic programming with bitmasks

27 - Or use nearest neighbor heuristic

28 - =xProsxx: More scalable

29 - *xCons**:

8 @

9]

Complex implementation, may not be needed for small dataset

30
31 ### Recommended Implementation Steps
32
33 1. =xParse input data=x
34 - Use regex “'(\w+) to (\w+) = (\d+)'" to extract cities and distances
35 - Create bidirectional edge map (A+B and B+A have same distance)
36
37 2. *=Build distance matrix=»
38 - Map city names to indices
@D 39 - Create nxn matrix where matrix[i,j] = distance from city i to city j
40 - Use 0 or = for non-connected pairs (though problem implies all pairs are

given)

P DYNA

¥ Claude Code X

.

(= Emoo
+t-@ %08 -

Now let me check how to use APLCart to find useful patterns:

Let me search APLCart for useful patterns:

aplcart - semantic-search (MCP)(query: "parse string with regex extract groups", Llimit:
5)

L1
"query": "parse string with regex extract groups"”,
"results": [
. +162 lines (ctrl+o to expand)

aplcart - semantic-search (MCP)(query: "split string on spaces partition", limit: 3)
L1
"query": "split string on spaces partition",
"results"”
. +79 lines (ctrl+o to expand)
aplcart - search (MCP)(query: "partition split", Llimit: 5)
"consecutive pairs windowed", limit: 3)

aplcart - semantic-search (MCP)(query:
L{
"query": "consecutive pairs windowed",
"results": [
. +67 lines (ctrl+o to expand)

Let me test parsing with Dyalog script MCP:

dyalog-script - execute_apl (MCP)(code: "A Test parsing a single line\nline « 'London
to Dublin = 464%'\n\na Use OS to extract groups with
regex\npattern « '(\\w+) to (\\w+) = (\\d+)'\nresult «
pattern 05 {w.(14Lengthst Offsetsds cBlock)}
~line\n[+'Parsed: '\nD«result")
L1
"output":
"error’:
. +6 lines (ctri+o to expand)

"Parsed:\n London Dublin &é% ",

Good! Now let's test parsing multiple lines and building unique cities:

*

>

Writing tests for parsing input data. ctrli+t to hide todos)

(esc to interrupt

0 Write tests for parsing input data

O Write tests for building distance matrix

O Write tests for calculating route distances
O Implement Day9 function to pass tests

O Run full test suite

»» accept edits on (shift+tab to cycle)
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- ® Now let me check how to use APLCart to find useful patterns:

¥ task-1.md M @ ¥ PLAN.md U * »
¥ PLAN.md > (& # Solution Plan for Task 1 - Traveling Salesman Problem (TSP)

1 # Solution Plan for Task 1 - Traveling Salesman Problem (TSP)
2

3 ## Problem Analysis

I ® Let me search APLCart for useful patterns:

& v D

® aplcart - semantic-search (MCP)(query: "parse string with regex extract groups", limit:
% This is a classic Traveling Salesman Problem (TSP) where we need to: 5)
5 1. Visit each city exactly once LA
6 2. Find the shortest possible route :querK:N"p?rse string with regex extract groups",
results":

® Let me test parsing with Dyalog script MCP:

® dyalog-script - execute_apl (MCP)(code: "m Test parsing a single line\nline « 'London
to Dublin = 464'\n\npa Use [0S to extract groups with
regex\npattern « '(\\w+) to (\\w+) = (\\d+)'\nresult «
pattern S {w.(1iLengthst "Offsetsd cBlock)}
~line\n[«'Parsed: '\n(«result")

L {

"output”: "Parsed:\n London Dublin 464 "
ller.r.or.ll: IIII’

+6 lines (ctrl+o to expand)

L]

® Good! Now let's test parsing multiple lines and building unique cities:

o =-0%e Tegex TWWe] €0 (el = (har) TG extract cities ang gietances O Write tests for building distance matrix
35 - Create bidirectional edge map (A+B and B+A have same distance) O Write tests for calculating route distances
36 O Implement Day9 function to pass tests

37 2. *=Build distance matrix=» 0 Run full test suite

38 - Map city names to indices
39 - Create nxn matrix where matrix[i,j] = distance from city i to city j > l

40 - Use 0 or = for non-connected pairs (though problem implies all pairs are

{‘% given) »+ accept edits on (shift+tab to cycle)

femain* & ®0A0@E9 4 LiveShare Git Graph
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¥ task-1.md M @ ¥ PLAN.md U % »
¥ PLAN.md > (& # Solution Plan for Task 1 - Traveling Salesman Problem (TSP)
1 # Solution Plan for Task 1 - Traveling Salesman Problem (TSP)
2
## Problem Analysis
This is a classic Traveling Salesman Problem (TSP) where we need to:
1. Visit each city exactly once
2. Find the shortest possible route
3. Can start and end at any two different cities

0 ® N o F oW

## Solution Approach

10

11 ### Data Parsing

12 1. Parse input lines in format "Cityl to City2 =
13 2. Extract unique city names

14 3.
15

16 ### Algorithm Options

17

18 #### Option A: Brute Force with 2555 Permutations (Recommended for small datasets)
19 - Use ‘Ew' from m workspace to generate all permutations

Distance"

Build a distance matrix or lookup structure

O =8 TE oD

® @

20 - Calculate total distance for each permutation

ﬁﬁ 21 - Return minimum distance
22 - #*Pros*»: Simple, guaranteed optimal, leverages existing dfns

§§§ 23 - **xConsx*: O(n!) complexity, only viable for small n (< 10-12 cities)
24

25 #### Option B: Build Custom TSP Solver

26 - Implement dynamic programming with bitmasks

27 - Or use nearest neighbor heuristic

28 - =xProsxx: More scalable

29 - *%Cons**: Complex implementation, may not be needed for small dataset
30

31 ### Recommended Implementation Steps

32

33 1. =xParse input data=x

34 - Use regex “'(\w+) to (\w+) = (\d+)'" to extract cities and distances
35 - Create bidirectional edge map (A+B and B+A have same distance)

36

37 2. *=Build distance matrix=»

38 - Map city names to indices

39 - Create nxn matrix where matrix[i,j] = distance from city i to city j
40 - Use 0 or = for non-connected pairs (though problem implies all pairs are

given)
Jmain® & ®0MA0@DE9 4 LiveShare  Git Graph
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Now let me check how to use APLCart to find useful patterns:
Let me search APLCart for useful patterns:

aplcart - semantic-search (MCP)(query: "parse string with regex extract groups”, limit:
5)

L1
"query": "parse string with regex extract groups"”,
"results": [
. +162 lines (ctrl+o to expand)

aplcart - semantic-search (MCP)(query: "split string on spaces partition", limit: 3)
LA

"query": "split string on spaces partition",
"results":
. +79 lines (ctrl+o to expand)

aplcart - search (MCP)(query: "partition split", Llimit: 5)

aplcart - semantic-search (MCP)(query: "consecutive pairs windowed", limit: 3)
L{

"query": "consecutive pairs windowed",

"results": [

. +67 lines (ctrl+o to expand)
Let me test parsing with Dyalog script MCP:

dyalog-script - execute_apl (MCP)(code: "A Test parsing a single line\nline « 'London
to Dublin = 464%'\n\na Use OS to extract groups with
regex\npattern « '(\\w+) to (\\w+) = (\\d+)'\nresult «
pattern 05 {w.(14Lengthst Offsetsds cBlock)}
~line\n[+'Parsed: '\nD«result")
L1
"output":
"error’:
. +6 lines (ctri+o to expand)

"Parsed:\n London Dublin &é% ",

Good! Now let's test parsing multiple lines and building unique cities:
Writing tests for parsing input data. (esc to interrupt ctrli+t to hide todos)
0 Write tests for parsing input data

O Write tests for building distance matrix

O Write tests for calculating route distances

O Implement Day9 function to pass tests

O Run full test suite

»» accept edits on (shift+tab to cycle) s}
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le Update(src/day9.aplf)

| Updated src/day9.aplf with 8 additions

1 Day9+«{
A This is the solution to:

o0l F WN

12 }

A https://adventofcode.com/2015/day/9

atrix where matrix[i,j] = distance from city i to city j > I

nnected pairs (though problem implies all pairs are ) )
»» accept edits on (shift+tab to cycle)
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Day9+«{
_«'pmat'0OCY'dfns'
parsed«' (\w+) to (\w+) = (\d+)'0OS{w.(1¥Lengthst Offsetst eBlock) }rw
cities«u>s,/2t parsed
n«gcities
dist<n npO

from to d«w
i jecitiesifrom to
dist[i;j]edist[j;i]«ed
} ‘parsed
L/{+/{dist[2w;2dw]} "2,/w} Vpmat n
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‘pmat 'JCY'dfns'
data«' '(#gcr)"'(tol=)'0OR" 'S[NGET'data9.txt'!
Day9+«{
weightsew,wee +/tw
edges«(r59)28 2p(vir),(tw)[;1 2]
adj«weights@(Yedges)+0p~2p8
(L/,[/)+/adj[¥{ew}d! 2rpmat 8]
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Agent loop + tools use > single shot

DVNA Fall 2025

A DYALOG USER MEETING




63

Productivity gain: net-negative

DVNA Fall 2025

A DYALOG USER MEETING




64

About a day's worth of tweaking
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The Elephant in the Room

Models just aren't good enough at APL
...yet.
Lack of training data

Lack of incentives

No APL-specific tokenisers
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Semantic Search; RAG

Y Claude
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Al Applications: Semantic Search

@ Semantic search: "what | mean, not what | say"

® Use a model to create vector embeddings to encode
meaning

® Query becomes a nearest neighbor problem in a vector
space

DVNA Fall 2025
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Search Dyalog's Docs

curl -s -X POST "http://localhost:8000/search" \
-H "Content-Type: application/json" \
-d '{"query": "how do I serialise and compress a vector?",
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Search Dyalog's Docs

"urls": [
"https://dyalog.github
"https://dyalog.github
"https://dyalog.github
"https://dyalog.github
"https://dyalog.github

1,

"scores": [
0.5287122130393982,

.4902539551258087,

. 42364850640296936,

. 40454745292663574,

.3980979919433594

O ooo

.io/documentation/20.0/language-reference-guide/the-i-beam-operator/compress-decompress-vector-of-short-integers",
.io/documentation/20.0/language-reference-guide/the-i-beam-operator/serialise-deserialise-array",
.i0/documentation/20.0/language-reference-guide/system-functions/fprops",
.io/documentation/20.0/programming-reference-guide/introduction/arrays/array-notation",
.io/documentation/20.0/programming-reference-guide/introduction/namespaces/serialising-namespaces"
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Search Dyalog's Docs

"urls": [

1,

"scores":

]

./the-i-beam-operator/compress-decompress-vector-of-short-integers",
./the-i-beam-operator/serialise-deserialise-array",
./system-functions/fprops",

./introduction/arrays/array-notation",
./introduction/namespaces/serialising-namespaces"

[
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CLEAR WS - Dyalog APL
[ TliTar =#2s<>2=2¢ vai? ticoclldy¥ r1regun~

OOBBEI:+s oARA->woavVE& ~ &

IJsemla "how do I serialise and compress a vector?"
.0/language-reference-guide/the-i-beam-operator/compress-decompress-vector-of-short-ini

://dyalog

.github.

io/documentation/20

https

://dyalog

.github.

io/documentation/20

.0/language-reference-guide/the-i-beam-operator/serialise-deserialise-array

https

://dyalog

.github.

io/documentation/20

.0/language-reference-guide/system-functions/fprops

hitps

://dyalog

.github.

io/documentation/20

.0/programming-reference-guide/introduction/arrays/array-notation

https

://dyalog

.github.

io/documentation/20

.0/programming-reference-guide/introduction/namespaces/serialising-namespaces

&:

1 0pQ: 0 OTRAP [ISI:

0 0I0:

1 [OML:

1 Pos:

23279/23280,6
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ece A Dyalog Docs - NotebooklM X + v G L [ ]
« (] O B notebookim.google r k/3fdcdaB9-8b92-4113-bf5a-e2a6539f121 < L 0 &y = e' I llnl

G B B 5 Oxaz ()oyalog i Teams Wi css @ printcss ) <[ ©) Documentation %7 GitGuide @ OFNS @ ohm @ @ ride ElProse @ wiki [ Router @ LarkiDE ) D20 (G Branches (1) [Dyalo...

@ Dyalog DoCs @ Public notebook ® Share 8 Settings
Sources D Chat @ Refresh Studio a
+ Add C¢ Discover Alit
How do | serialise and compress a vector? 'II z @ z
Audio Overview Video Overview
Select all sources
To serialize and compress a vector, you can use the specialized I-Beam functions 2201 (Serialise/
ET] APL Course Deserialise Array) and 2191 (Compress/Decompress Vector of Short Integers) 1, 2. o L'o
The process generally involves two sequential steps: Serialization, which converts the vector into a raw CTIES pa—
i P
Conga User Guide.pdf byte rep ion, and then Comp ion, which applies a compression algorithm to these bytes.
1. Serialization (Converting the Array to a Transmittable Format) o]
Dyalog APL Language Reference Guide.pdf o . ) . . & 4 = 4
The serialization process converts any array into a format suitable for transmission or storage, typically a
vector of shortintegers 3, 4. Rl (i
1] Dyalog Forums - Index page
+ Function: X(228T)Y 3 .
Dyalog Programming Reference Guide.pdf « Operation: To serialize an array Y, the left argument X mustbe 1 4 . -I|I-’ Dyalog Docs © N s
1source - 171d ago ’ :
+ Input/Output: ¥ can be any array, and the result (R) is the serialised form presented as a sint_vector
Dyalog for Microsoft Windows Interface Gui... 4 . A sint_vectoris defined as a simple integer vector whose items are all in the range "128 to 127 (type o Dyalog APL: Language Overview and... .
83) 5, 3. 13 sources - 171d ago *
Dyalog for Microsoft Windows Object Refere... The expression is typically: $$ \text{Serialized_Vector} \leftarrow 1(2201)\text{Your Vector} $$
L" Dyalog APL Language: Core Features and... .,
2. Comp ion (Applying Comp ion to the Serialized Vector) iefi . . :
Dyalog for Microsoft Windows Ul Guide.pdf Briefing doc - 12 sources - 187d ago
Once you have the sint_vector from serialization, you can compress it using I-Beam 2191 5, 4 .
C* Dyalog APL Core Concepts and Quiz .
ET HttpCommand + Function: X(2191)Y, where ¥ must be a sint vector 5, & . (1 Study guide - 12 sources - 187d ago H

Start typing... 14 sources

MasteringDyalogAPL.pdf B New saved note .
312d ago *
2 i i ji i log? He log
MasteringDyalogAPL.pdf o < xecution flow, error handling, and object management in Dyalog low does Dyaloc > J
u [ Newsavedno .

NotebookLM can be inaccurate; please double-check its responses.
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Client libraries
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Client libraries

@ Build Al-enabled applications in Dyalog APL

@ "Smartdata", forecasts, chatbots, assistants...
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Client libraries

@ Dyalog provides basic client libraries for OpenAl-
compatible providers

https://dyalog.github.io/OpenAl

® Bigger job than it seems: API spec alone is 40k lines...
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© @ CLEAR WS - Dyalog APL
« +-x+x0BFol? | T loTar =#2g<>2=% VvaAarRV ¢

/\NtX ,s5pbdelq "E¥..o.36e DOBEBEIs+s oA-wa

Jget github.com/Dyalog/OpenAI/blob/main/source/OpenAI.apln
#.0penAl
OpenAI.Initialize
0 Initialized
: OpenAI.APIKey+«'sk-proj-O[REDACTED]HQLQd'
B req«OpenAl.Image.Create 'A python eating an apple’
. req.size«'512x512"'
req.response_format«'b64_json’
resp<req.Run ¢ resp.ShowPics|
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State of the APL-AIl nation

Situation is rapidly improving, but...
...fair way to go before improving dev productivity
Agents looks like the shape of Al-for-development

Semantic search, RAG: solid today

Build your own Al-applications with Dyalog
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What will Dyalog do?

Improve CLI story: testing, code evaluation
New Al-friendly documentation format
Improve error messaging, stack traces
Client libraries

Examples, training materials

Publish more APL code
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Lack of APL code 'out there'
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Can you help? Talk to us.
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