

JAWS

Brian Becker
APL Tools Architect
Dyalog, LTD

Jarvis And WebSockets

Jarvis and WebSockets3

 Jarvis is a Web Service framework that helps you:
 Expand your audience

 Make it easier for you to make your APL application or data accessible

 APL not required for the client

 Lessen the need to learn underlying technologies (HTTP, etc)

 Yet, provide low-level access if needed

 Assume little - maximize flexibility for you

Why Jarvis?

Jarvis and WebSockets4

 JSON and REST Servis

 Operates in one of two modes

 JSON mode makes your APL functions accessible

 REST mode makes your data accessible

Jarvis

Jarvis and WebSockets5

 JSON mode
 Endpoints are APL functions

 https://someurl.com/compute → corresponds to APL function "compute"

 REST mode
 Endpoints are resources (real or virtual) to be retrieved and/or

manipulated

 https://someotherurl.com/customers/123 → refers to customer with ID
123

Jarvis

Jarvis and WebSockets6

A Web Service in 5 minutes…

Jarvis and WebSockets7

 JSON mode
 Most users use JSON mode

 https://tryapl.org

 REST mode
 Some REST mode users

 https://dcms.dyalog.com

 https://dyalogprod.gos.dyalog.com/video-library/

Jarvis in Use

https://tryapl.org/
https://tryapl.org/
https://dcms.dyalog.com/
https://dcms.dyalog.com/
https://dyalogprod.gos.dyalog.com/video-library/
https://dyalogprod.gos.dyalog.com/video-library/
https://dyalogprod.gos.dyalog.com/video-library/
https://dyalogprod.gos.dyalog.com/video-library/

Jarvis and WebSockets8

 Endpoints are APL functions
avg←(+⌿)÷≢

avg←{(+⌿⍵)÷≢⍵}

∇ r←avg w
[1] r←(+⌿w)÷≢w

∇

JSON Mode

Jarvis and WebSockets9

 Endpoints are APL functions
 Client issues an HTTP POST request with a JSON payload

'[3,1,4,1,5,9,2,6]'
 Jarvis parses the request and converts the payload to an APL array

3 1 4 1 5 9 2 6

 Jarvis calls your function, passing the APL array as the right argument
 Your function returns an APL array
 Jarvis converts the APL array to JSON
 Jarvis formats and sends a proper HTTP response with the JSON result

JSON Mode

Jarvis and WebSockets10

JSON: {"name":"Jean", "bday":[1,23]}

APLAN: (name:'Jean' ⋄ bday:1 23)

zodiac←{
cusps←120 219 321 420 521 621 723 823 923 1023 1122 1222
signs←13⍴'Capricorn' 'Aquarius' 'Pisces' 'Aries' 'Taurus'...
⍵.sign←(1+cusps⍸100⊥⍵.bday)⊃signs
⍵ }

]APLAN.Output on
'Was OFF'

zodiac (name:'Jean' ⋄ bday:1 23)
(bday:1 23 ⋄ name:'Jean' ⋄ sign:'Aquarius')

JSON Objects ≡ APL Namespaces

Jarvis and WebSockets11

 Uses standard HTTP methods for CRUD

REST
Create, Read, Update, Delete

Jarvis and WebSockets12

 Uses standard HTTP methods for CRUD










 GET – retrieve

 POST – create

 PUT – update/replace

 DELETE – delete

 PATCH – partial update

REST

Jarvis and WebSockets13

 Uses standard HTTP methods for CRUD
 GET /customers

 GET /customers/123

 DELETE /customers/123

 POST /customers/345
{ "name":"fred" , "dob":"19621031" }

 PATCH /customers/345
{ "name":"bob" }

 GET – retrieve

 POST – create

 PUT – update/replace

 DELETE – delete

 PATCH – partial update

REST

Jarvis and WebSockets14

 You write an APL function for each HTTP method you want your service
to support

 For a "read-only" service, you would write only a "Get" function

 Jarvis passes all the client request information to your function

REST

Jarvis and WebSockets15

 Designing a consistent REST schema requires thought and effort

 Truly RESTful APIs have additional qualities like cacheability and
statelessness
 It's left up to you to decide how, to what extent, or even whether, to implement.

 Many "REST" web services are not truly RESTful

REST

Jarvis and WebSockets16

REST Example - DCMS









Jarvis and WebSockets17

url ← 'https://dcms.dyalog.com/videos'

 ⊢ r←HttpCommand.GetJSON (Command:'get' ⋄ URL:url ⋄ Timeout:60)
[rc: 0 | msg: | HTTP Status: 200 "OK" | ≢Data: 700]

 ↑(3↑r.Data).(presenter event youtube_id)
Adám Brudzewsky APL Quest Mj4wyLKrBho
Adám Brudzewsky APL Quest w-rzx2VNqbY
Adám Brudzewsky APL Quest pxo2BtoMxP4

 url ← url,'/Mj4wyLKrBho'

 ⊢ r←HttpCommand.GetJSON 'get' url
[rc: 0 | msg: | HTTP Status: 200 "OK" | ≢Data: 1 (namespace)]

Jarvis and WebSockets18

 ∇ res←Get req;allowed;nl
[1] :If GLOBAL.debug ⍝ :If here because prefer not to compute ⍕⎕TS for every request
[2] ⎕←'> GET REQUEST at ',⍕⎕TS
[3] ⎕←req.Endpoint
[4] last←req
[5] :EndIf
[6] :Trap GLOBAL.debug↓0
[7] req.Endpoint←{⍵⌿⍨1(⊢∨⌽)'/'≠⍵}req.Endpoint ⍝ Remove multiple slashes
[8] :If req.Endpoint(⊃⍷⍨)'/videos'
[9] res←read.videos.Handle req
[10] :ElseIf 1=+/req.Endpoint∘≡¨'/person' '/organisation' '/event' '/event_type' ...
[11] res←read.Table 1↓req.Endpoint
[12] :ElseIf 1=+/req.Endpoint∘≡¨'/presenters' '/dtv_events'
[13] res←CACHE⍎1↓req.Endpoint
[14] :ElseIf req.Endpoint≡'/version'
[15] res←Version
[16] :Else
[17] req.Fail 404
[18] :EndIf
[19] :Else
[20] 'Internal Server Error'req.Fail 500
[21] :EndTrap
 ∇

Jarvis and WebSockets19

 Anything that can "speak" HTTP
 Microservices

 APL applications

 Web Front Ends (JavaScript, React, Vue, etc)

 Python, C#, Java

 Mobile Apps

 Command line tools (curl, httpie)

Clients

Jarvis and WebSockets20

 Jarvis has a simple built-in HTML interface to allow you to
test JSON mode endpoints – that's it.

 Presentation is left up to the client
 Service-based applications may not need any UI

 Let your UI people do what they do best

UI-agnostic

Jarvis and WebSockets21

 Application Initialization

 Request Validation

 Authentication

 Session Initialization

 Request Post Processing

 Application Shutdown

"Hook" Functions

Jarvis and WebSockets22

 JSON and REST modes work well for Request-Response

 What about more dynamic interactions?
 Server needs to push data to the clients

 Financial, Chat, Gaming, Monitoring

 Long running requests

 That's where WebSockets come in…

Okay, but…

Jarvis and WebSockets23

 An HTTP connection can be "upgraded" to a WebSocket
 The HTTP connection is established from the Client to the Server

 The Client requests to upgrade the connection to a WebSocket

 If the Server approves the upgrade, it sends an upgrade response

 The connection is now bi-directional (full-duplex)

WebSockets

Jarvis and WebSockets24

Jarvis and WebSockets25

 Request-Response (client initiates)

 Short-lived; closes after each request

 Higher message overhead (headers, etc)

 Higher latency (new connection per
request)

 Use Cases

 Web pages

 Web service APIs

 Full-duplex (both sides can send anytime)

 Persistent; stays open until explicitly closed

 Lower overhead after initial handshake

 Lower latency (persistent connection)

 Use Cases

 Real time data (trading, chat, gaming, monitoring)

 Server needs to "push" data to client

 Long running endpoints

HTTP WebSocket

Jarvis and WebSockets26

 More "Hook" functions
 Authentication

 AutoUpgrade

 AutoUpgradeReq

 Receive

 Close

 Error

WebSockets in Jarvis

Jarvis and WebSockets27

Demo Time

Jarvis and WebSockets28

Questions?

	Slide 0
	Slide 1: JAWS
	Slide 2: Jarvis And WebSockets
	Slide 3: Why Jarvis?
	Slide 4: Jarvis
	Slide 5: Jarvis
	Slide 6: A Web Service in 5 minutes…
	Slide 7: Jarvis in Use
	Slide 8: JSON Mode
	Slide 9: JSON Mode
	Slide 10: JSON Objects ≡ APL Namespaces
	Slide 11: REST
	Slide 12: REST
	Slide 13: REST
	Slide 14: REST
	Slide 15: REST
	Slide 16: REST Example - DCMS
	Slide 17
	Slide 18
	Slide 19: Clients
	Slide 20: UI-agnostic
	Slide 21: "Hook" Functions
	Slide 22: Okay, but…
	Slide 23: WebSockets
	Slide 24
	Slide 25: HTTP
	Slide 26: WebSockets in Jarvis
	Slide 27: Demo Time
	Slide 28: Questions?

