
Expanding Your 
Application's Audience 
With Jarvis
Brian Becker
APL Tools Architect
Dyalog, LTD



Expanding Your Application's Audience With Jarvis1

 Introductions

 Goals

 HttpCommand

 Break

 Jarvis

 Break

 WebSockets

Agenda



Expanding Your Application's Audience With Jarvis2

 Learn enough about HttpCommand to call a Jarvis web 
service

 Learn enough about Jarvis to implement
 a simple JSON-based web service

 a simple WebSocket service

Goals



Expanding Your Application's Audience With Jarvis3

Client Examples:
A web browser, 
HttpCommand, cURL, 
JavaScript, Python, 
httpie

 HTTP is a request-response protocol
 A client sends a request to a server
 The server receives the request
 The server runs an application to process the 

request
 The server sends a response back to the 

client
 The client receives the response

HTTP Communications 101

Server Examples:
IIS, Apache, Nginx, 
Jarvis, 
DUI/MiServer



Expanding Your Application's Audience With Jarvis4

Client Examples:
A web browser, 
HttpCommand, cURL, 
JavaScript, Python, 
httpie

                                   
                                     
                                
                                               

       
                                         

      
                                 

HTTP Communications 101

Server Examples:
IIS, Apache, Nginx, 
Jarvis, 
DUI/MiServer



Expanding Your Application's Audience With Jarvis5

HttpCommand is a utility that is well-suited to enable the APLer to interact with web services 
because it:

 Allows you to specify an HTTP request in a manner that is conducive to an APLer

 Sends a properly formatted HTTP request to the server

 Receives the server's response

 Decomposes the response in a manner that is conducive to an APLer

 Minimizes the need for you to learn a lot about HTTP

HttpCommand



Expanding Your Application's Audience With Jarvis6

HttpCommand is bundled with Dyalog APL and can be loaded using ]load

      ]load HttpCommand
#.HttpCommand

HttpCommand.Upgrade can obtain the latest released version, if one is available.
DO NOT use HttpCommand.Upgrade in production code as you won't know in advance if the new 
version has a major version change that potentially introduces a breaking change. 

      HttpCommand.Upgrade
0  Upgraded to HttpCommand ...

HttpCommand is documented online; HttpCommand.Documentation will display a link to the online 
documentation.

      HttpCommand.Documentation
See https://dyalog.github.io/HttpCommand/

Exercise 1: Obtaining HttpCommand



Expanding Your Application's Audience With Jarvis7

⊢ resp ← HttpCommand.Get 'dyalog.com'
[rc: 0 | msg:  | HTTP Status: 200 "OK" | ≢Data: 21783]

      resp.(7 3⍴⎕nl -⍳9)
 BytesWritten  Command       Cookies     
 Data          Elapsed       GetHeader   
 Headers       Host          HttpMessage 
 HttpStatus    HttpVersion   IsOK        
 OutFile       Path          PeerCert    
 Port          Redirections  Secure      
 URL           msg           rc           

      'hr' ⎕WC 'HTMLRenderer' ('HTML' resp.Data)

Your first HttpCommand

resp is a namespace 
that contains the 
response payload, if any, 
and metadata about the 
response.



Expanding Your Application's Audience With Jarvis8

"One time" functions:
 Get - Issue a GET request

      resp← HttpCommand.Get URL Params Headers

 Do - Send any HTTP Command:
      resp← HttpCommand.Do Command URL Params Headers

 GetJSON - Interact with JSON-based web services
      resp← HttpCommand.GetJSON Command URL Params Headers

New - Create a new request instance:
          req← HttpCommand.New Command URL Params Headers

HttpCommand "Shortcut" Functions



Expanding Your Application's Audience With Jarvis9

The "One time" HttpCommand functions (Get, GetJSON, and Do):
 create, configure and run a local HttpCommand instance.

They send the request and return the response namespace.
The instance, being local to the function, disappears when the function exits.

 No information is carried over from one invocation to the next

When you create an HttpCommand instance using HttpCommand.New:
 request settings that you set persist in the instance - you don't need to respecify them 

each time

 HTTP cookies that are returned by the server are preserved and sent on subsequent 
requests 

 the connection to the server remains open unless it's closed by the server

"One time" vs "Create an Instance"



Expanding Your Application's Audience With Jarvis10

 Create a new "POST" HTTP request to create a GitHub repository
      req←HttpCommand.New 'post' 'https://api.github.com/user/repos'

 Set the authentication for the request
      req.(AuthType Auth)←'bearer' GitHubAPIToken

 Create parameters for the request
      req.Params←⎕NS ''
      req.Params.(name description)←'test-repo' 'test repository'

      req.Params←(name:'test-repo' ⋄ description:'test repository')

Anatomy of an HTTP Request



Expanding Your Application's Audience With Jarvis11

Common HTTP Methods:

GET – read a resource

POST – update a resource

PUT – replace a resource

DELETE – delete a resource

PATCH – update a resource

Method Endpoint HttpVersion
Headers

Body

POST /user/repos HTTP/1.1
Host: api.github.com
User-Agent: Dyalog-HttpCommand/5.4.0
Accept: */*
Accept-Encoding: gzip, deflate
Authorization: Bearer [--Your Token--]
Content-Type: application/json;charset=utf-8
Content-Length: 52

{"description":"test repository","name":"test-repo"}

Anatomy of an HTTP Request



Expanding Your Application's Audience With Jarvis12

HttpVersion HttpStatus HttpMessage
Headers

Body

HTTP/1.1 201 Created
Server: GitHub.com
Date: Fri, 08 Sep 2023 18:36:10 GMT
Content-Type: application/json; charset=utf-8
Content-Length: 5562
Location: https://api.github.com/repos/plusdottimes/test-repo

{"id":689076423,"node_id":"R_kgDOKRJ4xw","name":"test-
repo","full_name":"plusdottimes/test-repo" ...

Anatomy of an HTTP Response

https://api.github.com/repos/plusdottimes/test-repo
https://api.github.com/repos/plusdottimes/test-repo
https://api.github.com/repos/plusdottimes/test-repo


Expanding Your Application's Audience With Jarvis13

Using HttpCommand

1.  Create an instance

2.  Configure your request

3.  Send the request

4.  Inspect the response



Expanding Your Application's Audience With Jarvis14

h←HttpCommand.New args

The following are all equivalent:

      req←HttpCommand.New 'post' 'bloofo.com' (⍳10) ('content-type' 'application/json')

      req←HttpCommand.New ''
      req.(Command URL Params)←'post' 'bloofo.com' (⍳10)
      req.Headers←'content-type' 'application/json'

      ns←⎕NS ''
      ns.(Command URL Params)←'post' 'bloofo.com' (⍳10)
      ns.Headers←'content-type' 'application/json'
      req←HttpCommand.New ns

      req←HttpCommand.New (Command:'post' ⋄ URL:'bloofo.com' ⋄ Params: ⍳10 ⋄ 
          Headers:'content-type' 'application/json')

1. Create an instance



Expanding Your Application's Audience With Jarvis15

Using HttpCommand

1. Create an instance

2. Configure your request

3. Send the request

4. Inspect the response



Expanding Your Application's Audience With Jarvis16

Command, URL, Params, and Headers are the most-commonly specified settings.
This is why they are arguments to Get, Do, GetJSON, and New.

Once you have created a request using New, you can specify any additional settings before 
sending the request.

      req←HttpCommand.New 'get'
      req.URL←'https://api.github.com/users/plusdottimes/repos'
      req.OutFile←'/tmp/myfile.json'
      req.MaxPayloadSize←250000

      req.Config ⍝ will return all settings for this request

      req.Show ⍝ will return the request as it will be sent to the server

2. Configure your request



Expanding Your Application's Audience With Jarvis17

HttpCommand will generate several headers, unless you specify them yourself.

      'header-name' req.SetHeader 'value' ⍝ unconditionally set a header 

      'header-name' req.AddHeader 'value' ⍝ set a header, if not already set

      req.RemoveHeader 'header-name' ⍝ remove a header

      req.Headers ⍝ contains the headers that you have set

      'accept-encoding' req.SetHeader '' ⍝ suppress an HttpCommand default header

You can use AuthType and Auth to specify the Authorization header (or set the header directly)

You can use ContentType to specify the Content-Type header (or set the header directly)

Working with Headers



Expanding Your Application's Audience With Jarvis18

Many web services return XML or JSON payloads.

Use TranslateData←1 to automatically translate these ⎕XML or ⎕JSON as appropriate
      req←HttpCommand.New 'get' 'https://api.github.com/users/bpbecker/repos'

      ⊢resp←req.Run
[rc: 0 | msg:  | HTTP Status: 200 "OK" | ≢Data: 10026]

      50↑resp.Data
[{"id":688060385,"node_id":"R_kgDOKQL34Q","name":"Public","full_name":"plusdotti      

      req.TranslateData←1

      ⊢resp←req.Run
[rc: 0 | msg:  | HTTP Status: 200 "OK" | ≢Data: 2]

      ↑resp.Data.(full_name created_at)
 plusdottimes/Public     2023-09-06T15:08:19Z 
 plusdottimes/test-repo  2023-09-08T18:36:09Z 

req.TranslateData←1



Expanding Your Application's Audience With Jarvis19

req←HttpCommand.New 'get' 
      req.URL←'https://api.github.com/users/plusdottimes/repos'

Use the Run method to send the request

      ⊢resp←req.Run
[rc: 0 | msg:  | HTTP Status: 200 "OK" | ≢Data: 10026]

3. Send the request



Expanding Your Application's Audience With Jarvis20

Using HttpCommand

1. Create an instance

2. Configure your request

3. Send the request

4. Inspect the response



Expanding Your Application's Audience With Jarvis21

resp.IsOK checks that 0=rc and 2=⌊0.01×HttpStatus 

      resp.IsOK
1

      resp.Headers  ⍝ contains the response headers

      resp.Data     ⍝ contains the response payload

4. Inspect the response



Expanding Your Application's Audience With Jarvis22

1. Create an instance [23]  req←HttpCommand.New 'get' 'someurl.com'

2. Configure your request [24]  req.TranslateData←1
   [25]  'content-encoding' req.SetHeader ''
   [26]  req.MaxPayloadSize←200000

3. Send the request  [27]  resp←req.Run

4. Inspect the response [28] :If resp.IsOK
   [29]    ⍝ code to run on success
   [30] :Else
   [31]    ⍝ code to run on failure
   [32] :EndIf

Recap



Expanding Your Application's Audience With Jarvis23

 Find the API description for the service

 for example, search for "github api" or "google maps api"

 Authentication - some services may require an API key for usage 
tracking, billing, and to mitigate misuse.

 GitHub authentication

 Cost - some services are free, others have a variety of billing models

Web Service APIs

https://www.google.com/search?q=github+api
https://www.google.com/search?q=github+api
https://www.google.com/search?q=google+maps+api
https://www.google.com/search?q=google+maps+api
https://docs.github.com/en/rest/overview/authenticating-to-the-rest-api
https://docs.github.com/en/rest/overview/authenticating-to-the-rest-api


Expanding Your Application's Audience With Jarvis24

GET request parameters are in the query string of the URL
https://www.alphavantage.co/query?function=INTRADAY&symbol=IBM&interval=5min

      req←HttpCommand.New 'get' 'https://www.alphavantage.co/query'

      req.Params←'function' 'INTRADAY' 'symbol' 'IBM' 'interval' '5min'

OR    req.Params←('function' 'INTRADAY') ('symbol' 'IBM') ('interval' '5min')

OR    req.Params←3 2⍴'function' 'INTRADAY' 'symbol' 'IBM' 'interval' '5min'

OR req.Params←⎕NS ''
      req.Params.(function symbol interval)←'INTRADAY' 'IBM' '5min'

OR req.Params←(function:'INTRADAY' ⋄ symbol:'IBM' ⋄ interval:'5min')

Translating API Examples into HttpCommand

https://www.alphavantage.co/query?function=INTRADAY&symbol=IBM&interval=5min
https://www.alphavantage.co/query?function=INTRADAY&symbol=IBM&interval=5min


Expanding Your Application's Audience With Jarvis25

https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-

28#create-a-repository-for-the-authenticated-use

POST, PUT, DELETE request parameters are in the body of the request
curl -L \
  -X POST \
  -H "Accept: application/vnd.github+json" \
  -H "Authorization: Bearer [--Your Token--]" \
  -H "X-GitHub-Api-Version: 2022-11-28" \
  https://api.github.com/user/repos \
  -d '{"name":"test-repo","description":"test repository"}'

Source: https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-
28#create-a-repository-for-the-authenticated-user

Translating API Examples into HttpCommand

https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-28#create-a-repository-for-the-authenticated-user
https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-28#create-a-repository-for-the-authenticated-user


Expanding Your Application's Audience With Jarvis26

https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-

28#create-a-repository-for-the-authenticated-use

POST, PUT, DELETE request parameters are in the body of the request
curl -L \
  -X POST \
  -H "Accept: application/vnd.github+json" \
  -H "Authorization: Bearer [--Your Token--]" \
  -H "X-GitHub-Api-Version: 2022-11-28" \
  https://api.github.com/user/repos \
  -d '{"name":"test-repo","description":"test repository"}'

Source: https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-
28#create-a-repository-for-the-authenticated-user

Translating API Examples into HttpCommand

follow any redirection

https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-28#create-a-repository-for-the-authenticated-user
https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-28#create-a-repository-for-the-authenticated-user


Expanding Your Application's Audience With Jarvis27

https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-

28#create-a-repository-for-the-authenticated-use

POST, PUT, DELETE request parameters are in the body of the request
curl -L \
  -X POST \
  -H "Accept: application/vnd.github+json" \
  -H "Authorization: Bearer [--Your Token--]" \
  -H "X-GitHub-Api-Version: 2022-11-28" \
  https://api.github.com/user/repos \
  -d '{"name":"test-repo","description":"test repository"}'

Source: https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-
28#create-a-repository-for-the-authenticated-user

Translating API Examples into HttpCommand

Command

https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-28#create-a-repository-for-the-authenticated-user
https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-28#create-a-repository-for-the-authenticated-user


Expanding Your Application's Audience With Jarvis28

https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-

28#create-a-repository-for-the-authenticated-use

POST, PUT, DELETE request parameters are in the body of the request
curl -L \
  -X POST \
  -H "Accept: application/vnd.github+json" \
  -H "Authorization: Bearer [--Your Token--]" \
  -H "X-GitHub-Api-Version: 2022-11-28" \
  https://api.github.com/user/repos \
  -d '{"name":"test-repo","description":"test repository"}'

Source: https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-
28#create-a-repository-for-the-authenticated-user

Translating API Examples into HttpCommand

URL

https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-28#create-a-repository-for-the-authenticated-user
https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-28#create-a-repository-for-the-authenticated-user


Expanding Your Application's Audience With Jarvis29

https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-

28#create-a-repository-for-the-authenticated-use

POST, PUT, DELETE request parameters are in the body of the request
curl -L \
  -X POST \
  -H "Accept: application/vnd.github+json" \
  -H "Authorization: Bearer [--Your Token--]" \
  -H "X-GitHub-Api-Version: 2022-11-28" \
  https://api.github.com/user/repos \
  -d '{"name":"test-repo","description":"test repository"}'

Source: https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-
28#create-a-repository-for-the-authenticated-user

Translating API Examples into HttpCommand

Params

https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-28#create-a-repository-for-the-authenticated-user
https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-28#create-a-repository-for-the-authenticated-user


Expanding Your Application's Audience With Jarvis30

https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-

28#create-a-repository-for-the-authenticated-use

POST, PUT, DELETE request parameters are in the body of the request
curl -L \
  -X POST \
  -H "Accept: application/vnd.github+json" \
  -H "Authorization: Bearer [--Your Token--]" \
  -H "X-GitHub-Api-Version: 2022-11-28" \
  https://api.github.com/user/repos \
  -d '{"name":"test-repo","description":"test repository"}'

Source: https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-
28#create-a-repository-for-the-authenticated-user

Translating API Examples into HttpCommand

Headers

https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-28#create-a-repository-for-the-authenticated-user
https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-28#create-a-repository-for-the-authenticated-user


Expanding Your Application's Audience With Jarvis31

Once you've identified a web service, generally you will need to:

 Create a UserID

 Give some form of payment information for services that charge 
for use

 Generate an API key and define the scope of use for that API key
 Keep your API key secure!

 Use your API key in requests that need authorization

Generic Steps to Using an API



Expanding Your Application's Audience With Jarvis32

Using the GitHub API documentation see if you can use HttpCommand to determine:

1. How many public repositories does the Dyalog organization have?
Hint: it's not 30 – look at the per_page parameter

2. How many releases does Dyalog/Jarvis have?

Using dog.ceo

1. How many dog breeds do they list?

2. Write a picture of your favorite dog breed to file

Exercises:



Expanding Your Application's Audience With Jarvis33

 Web Service
 Uses HTTP

 Machine-to-machine

 Variety of clients

 Python, C#, APL, JavaScript

 Specific API

 Web Server
 Uses HTTP

 Human interface

 Client is typically a browser 
using HTML/CSS/JavaScript

Web Service vs. Web Server



Expanding Your Application's Audience With Jarvis34

 Unzip Jarvis.zip to a folder of your choosing

 We'll use /Jarvis/ for the examples in this workshop
(You should use whatever folder name you unzipped into)

 Using Dyalog v19.0 or later
      ]import # /Jarvis 

Load The Exercise Materials



Expanding Your Application's Audience With Jarvis35

Jarvis is a framework that makes it easy for an APLer to deploy applications as web services.  
How easy?  Try this…

      )clear
      sum←+⌿
      ]load /Jarvis/Jarvis
      j←Jarvis.New ''
      j.Start
      ]load /Jarvis/HttpCommand
      r←HttpCommand.GetJSON 'post' 'localhost:8080/sum' (⍳10)
      r
      r.Data
      ]open http://localhost:8080

Exercise: Make a JARVIS Web Service



Expanding Your Application's Audience With Jarvis36

 We defined and started a web service
 Defined an "endpoint" (the sum function)

 Created (using Jarvis.New) and started the server (using j.Run)

 Used HttpCommand as a client

 Used a browser to open Jarvis' built-in HTML page that contains 
a JavaScript client to communicate with the web service

What just happened?



Expanding Your Application's Audience With Jarvis37

What happened under the covers?

 JavaScript running in the browser created an XMLHttpRequest and sent 
the contents of the input window as its payload

 Jarvis received the request and converted the payload to APL
 Jarvis called the endpoint, passing the APL payload as its right argument
 sum did its thing and returned an APL array as its result
 Jarvis translated the result into JSON and sent it back to the client as the 

response payload
 JavaScript in the client updated the output area on the page with the 

response payload



Expanding Your Application's Audience With Jarvis38

JSON
 Endpoints are result-returning monadic or 

dyadic APL functions

 All requests use HTTP POST

 Request and response payloads are JSON

 Jarvis handles all conversion between 
JSON and APL

 Use this when your endpoints are 
"functional"

REST
 Write a function for each HTTP method your 

service will support (GET, POST, PUT, etc)

 Each function will:

 Take the HTTP request as its right argument

 Parse the requested resource and query 
parameters/payload

  Take some appropriate action

 Consider this when you are managing 
resources

Jarvis' Two Paradigms



Expanding Your Application's Audience With Jarvis39

JSON – JavaScript Object Notation
String: "this is a string"
Number: 42
Array: [1,2,"hellow world"]
Object: {"name": "value"}
      ns←⎕NS ''      
      ns.(name age)←'Dyalog' 40
      array←2 2⍴(2 2⍴⍳4)'Jarvis'('Dyalog' 23)ns

      ⎕JSON⍠('HighRank' 'Split')⊢array 

[[[[1,2],[3,4]],"Jarvis"],[["Dyalog",23],{"age":40,"name":"Dyalog"}]]

JSON in 3 Minutes



Expanding Your Application's Audience With Jarvis40

CodeLocation is where Jarvis will look for your Endpoint code.
CodeLocation defaults to #
CodeLocation can be the name of or reference to an existing 
namespace
      j.Stop
      'myApp' #.⎕NS '' ⍝ create a namespace
      myApp.Rotate←⌽   ⍝ define an endpoint
      j.CodeLocation←#.myApp ⍝ or '#.myApp'
      j.Start

CodeLocation



Expanding Your Application's Audience With Jarvis41

CodeLocation can also be the name of a folder from where Jarvis 
will load your code.

If the folder is a relative file name, it will be relative to the path of:

 your workspace if you are running in a saved workspace

 your JarvisConfig file (we'll get to what this is in a couple slides)

 the Jarvis source file

CodeLocation



Expanding Your Application's Audience With Jarvis42

You can specify all your Jarvis settings in a JSON or JSON5 file.
JSON
{
  "Port": 22361,
  "CodeLocation": "./myApp"
}

JSON5
{
  Port: 22361,
  CodeLocation: "./myApp", // JSON5 allows comments
}

JarvisConfig File



Expanding Your Application's Audience With Jarvis43

By default, Jarvis will see all result-returning, monadic, dyadic, 
and ambivalent functions in CodeLocation and all descendent 
namespaces as possible endpoints.
You can use IncludeFns and ExcludeFns to restrict what 
functions seen as endpoints.
Both can contain individual function names, simple wildcarded 
expressions, or regex (or any combination thereof).
      j.ExcludeFns←'*.*' '∆*'
      j.IncludeFns←'GetPortfolio' 'BuyStock'

Filtering Endpoints



Expanding Your Application's Audience With Jarvis44

j.Stop

      j.CodeLocation ← #

      j.Start

Open your browser to localhost:8080

Look at the list of endpoints in the dropdown

Use IncludeFns and/or ExcludeFns to "hide" the functions in #.myApp 

      

Exercise: Limiting Your API



Expanding Your Application's Audience With Jarvis45

j.Debug←0  ⍝ Jarvis traps all errors (default setting)

      j.Debug←1  ⍝ Stop on error

      j.Debug←2  ⍝ Intentional stop before calling your code

      j.Debug←4  ⍝ Intentional stop after receiving request

Codes are additive.

   ∇ r←req oops payload
[1] ∘∘∘
   ∇

Debugging Jarvis



Expanding Your Application's Audience With Jarvis46

If your endpoint function is dyadic or ambivalent, Jarvis will pass the request object as the left 
argument. 

The request object is the same for both JSON and REST paradigms.

 AcceptEncodings  Body            Boundary      Charset     
 Complete         ContentType     ContentTypes  Cookies     
 Endpoint         ErrorInfoLevel  HTTPVersion   Headers     
 HttpStatus       Input           Method        Password    
 Payload          PeerAddr        PeerCert      QueryParams 
 Response         Server          Session       UserID 

This means that some elements may not have meaning in one paradigm or the other. 

For instance, in the JSON paradigm the Method is always 'POST'

Optional Left Argument - Request



Expanding Your Application's Audience With Jarvis47

There are several points (hooks) in Jarvis' flow where you can inject custom behavior.

You specify these by setting a hook setting to the name of a function to execute.

AppCloseFn - called when Jarvis shuts down

AppInitFn - called when Jarvis starts

AuthenticateFn - called on every request to authenticate the request

SessionInitFn - called when a new session is initialized

ValidateRequestFn - called on every request to perform any other validation you need

User "Hooks"



Expanding Your Application's Audience With Jarvis48

If you need to maintain state between requests, Jarvis supports 
sessions using the following settings:
SessionTimeout - 0 = do not use sessions, ¯1 = no timeout, 0< session timeout time (in minutes)

SessionIdHeader – the name of the header field for the session token

SessionUseCookie - 0 = just use the header; 1 = use an HTTP cookie

SessionPollingTime - how frequently (in minutes) we should poll for timed out sessions

SessionCleanupTime - how frequently (in minutes) do we clean up timed out session info

Maintaining State With Sessions



Expanding Your Application's Audience With Jarvis49

1. Stop Jarvis, if it's running

2. Add sessions to the service

3. Write a new endpoint named Add that will add its argument to a 
running total kept in the session.

4. Use a 1 minute session timeout

5. Start Jarvis

6. Test Add

Exercise: Using Sessions



Expanding Your Application's Audience With Jarvis50

j.Stop

      j.SessionTimeout←1 ⍝ 1 minute session timeout

      j.SessionInitFn←'initSession'

      j.SessionUseCookie←1

      initSession←{⍵.Session.Total←0} 

      add←{⍺.Session.Total ⊣ ⍺.Session.Total+←+/∊⍵}

      j.Start

Exercise: Using Sessions



Expanding Your Application's Audience With Jarvis51

AuthenticateFn specifies the name of a function to perform authentication.

AuthenticateFn should return a 0 if the authentication succeeds or is not necessary.

If you use HTTPS, you can safely transmit credentials in plaintext. Otherwise, you should be 
running on a network you trust or using salt and encryption to encrypt credentials.

Authenticating



Expanding Your Application's Audience With Jarvis52

Jarvis can use HTTP Basic authentication (using the HTTPAuthentication setting)

When using HTTP Basic authentication Jarvis will set the request UserID and Password settings.

Browsers will send credentials with every subsequent request.

     ∇ r←Login req
[1]  ⍝ non-empty and UserID≡Password
[2]    r←(0∊⍴req.UserID)∨req.UserID≢req.Password
     ∇

      j.Stop

      j.AuthenticateFn←'Login'

      j.Start

Authenticating



Expanding Your Application's Audience With Jarvis53

Jarvis can use HTTP Basic authentication (using the HTTPAuthentication setting)

When using HTTP Basic authentication Jarvis will set the request UserID and Password settings.

Browsers will send credentials with every subsequent request.

     ∇ r←Login req
[1]  ⍝ non-empty and UserID≡Password
[2]    r←(0∊⍴req.UserID)∨req.UserID≢req.Password
     ∇

      j.Stop

      j.AuthenticateFn←'Login'

      j.Start

Authenticating



Expanding Your Application's Audience With Jarvis54

1. Write a simple authentication function

2. Use the UserID and Password request fields

3. The function should return a 0 if the authentication passes

4. Set j.AuthenticateFn to the name of your function

5. Start the server

6. Try the sample web page

Exercise: Add Authentication



Expanding Your Application's Audience With Jarvis55

)clear

      ]import # /Jarvis

Load and Examine the WebSocket Sample App



Expanding Your Application's Audience With Jarvis56

 Change the subscribe function to instead return a random 
"dad joke" from https://icanhasdadjoke.com.

Last Exercise: Change the subscribe sample



Expanding Your Application's Audience With Jarvis57

 Make Jarvis more "industrial"
 Logging

 HTTP logging

 Error logging with email notification

 Restartability
 Remote monitoring / administration
 Make cloud deployment easier (or at least document the process better)

 Finish the documentation!

Jarvis Work In Progress



Expanding Your Application's Audience With Jarvis58

 WebSocket Protocol
 The JavaScript WebSocket API hides a lot of the underpinnings of 

the WebSocket protocol.

 Tools like Conga, JavaScript's XMLHttpRequest can make use of 
features not available through JavaScript.

 Should we support the full protocol or will JavaScript be sufficient?

Design Questions


	Slide 0: Expanding Your Application's Audience With Jarvis
	Slide 1: Agenda
	Slide 2: Goals
	Slide 3: HTTP Communications 101
	Slide 4: HTTP Communications 101
	Slide 5: HttpCommand
	Slide 6: Exercise 1: Obtaining HttpCommand
	Slide 7: Your first HttpCommand
	Slide 8: HttpCommand "Shortcut" Functions
	Slide 9: "One time" vs "Create an Instance"
	Slide 10: Anatomy of an HTTP Request
	Slide 11: Anatomy of an HTTP Request
	Slide 12: Anatomy of an HTTP Response
	Slide 13: Using HttpCommand
	Slide 14: 1. Create an instance
	Slide 15: Using HttpCommand
	Slide 16: 2. Configure your request
	Slide 17: Working with Headers
	Slide 18: req.TranslateData←1
	Slide 19: 3. Send the request
	Slide 20: Using HttpCommand
	Slide 21: 4. Inspect the response
	Slide 22: Recap
	Slide 23: Web Service APIs
	Slide 24: Translating API Examples into HttpCommand
	Slide 25: Translating API Examples into HttpCommand
	Slide 26: Translating API Examples into HttpCommand
	Slide 27: Translating API Examples into HttpCommand
	Slide 28: Translating API Examples into HttpCommand
	Slide 29: Translating API Examples into HttpCommand
	Slide 30: Translating API Examples into HttpCommand
	Slide 31: Generic Steps to Using an API
	Slide 32: Exercises:
	Slide 33: Web Service vs. Web Server
	Slide 34: Load The Exercise Materials
	Slide 35: Exercise: Make a JARVIS Web Service
	Slide 36: What just happened?
	Slide 37: What happened under the covers?
	Slide 38: Jarvis' Two Paradigms
	Slide 39: JSON in 3 Minutes
	Slide 40: CodeLocation
	Slide 41: CodeLocation
	Slide 42: JarvisConfig File
	Slide 43: Filtering Endpoints
	Slide 44: Exercise: Limiting Your API
	Slide 45: Debugging Jarvis
	Slide 46: Optional Left Argument - Request
	Slide 47: User "Hooks"
	Slide 48: Maintaining State With Sessions
	Slide 49: Exercise: Using Sessions
	Slide 50: Exercise: Using Sessions
	Slide 51: Authenticating
	Slide 52: Authenticating
	Slide 53: Authenticating
	Slide 54: Exercise: Add Authentication
	Slide 55: Load and Examine the WebSocket Sample App
	Slide 56: Last Exercise: Change the subscribe sample
	Slide 57: Jarvis Work In Progress
	Slide 58: Design Questions

