DOVNA Fall 2025

A DYALOG USER MEETING

Expanding Your
Application's Audience

With Jarvis

Brian Becker
APL Tools Architect
Dyalog, LTD

Agenda

Introductions
Goals
HttpCommand
Break

Jarvis

Break
WebSockets

Expanding Your Application's Audience With Jarvis PORNAPC T

Goals

Learn enough about Ht t pCommand to call a Jarvis web
service

Learn enough about Jarvis to implement
a simple JSON-based web service

a simple WebSocket service

Expanding Your Application's Audience With Jarvis PORNAPC T

HTTP Communications 101

HTTP is a request-response protocol Client Examples:
. A web browser,

A client sends a request to a server Ht tpCommand, cURL,
. JavaScript, Python,

The server receives the request httpie

The server runs an application to process the Server Examples:

request lIS, Apache, Nginx,

Jarvis,
The server sends a response back to the DUI/MiServer
client

The client receives the response

Expanding Your Application's Audience With Jarvis PORNAPC T

HTTP Communications 101

HTTP Request

Client Examples:

A web browser,
HttpCommand, cURL,
JavaScript, Python,
httpie

Client Server

N Server Examples:
lIS, Apache, Nginx,
Jarvis,
DUI/MiServer

HTTP Response

Expanding Your Application's Audience With Jarvis PORNAPC T

HttpCommand

HttpCommand is a utility that is well-suited to enable the APLer to interact with web services
because it:

Allows you to specify an HTTP request in a manner that is conducive to an APLer
Sends a properly formatted HTTP request to the server

Receives the server's response

Decomposes the response in a manner that is conducive to an APLer

Minimizes the need for you to learn a lot about HTTP

Expanding Your Application's Audience With Jarvis PORNAPC T

Exercise 1: Obtaining Ht t pCommand

Ht tpCommand is bundled with Dyalog APL and can be loaded using] load

Jload HttpCommand
#.HttpCommand

HttpCommand.Upgrade can obtain the latest released version, if one is available.
DO NOT use Ht tpCommand.Upgrade in production code as you won't know in advance if the new
version has a major version change that potentially introduces a breaking change.

HttpCommand.Upgrade
0 Upgraded to HttpCommand ...

HttpCommand is documented online; Ht tpCommand.Documentation will display a link to the online
documentation.

HttpCommand.Documentation
See https://dyalog.github.io/HttpCommand/

Expanding Your Application's Audience With Jarvis PORNAPC T

Your first Ht t pCommand

[rc: 0 | msg: | HTTP Status: 200 "OK" | #Data:
resp.(7 3pdnl -19)

BytesWritten Command Cookies

Data Elapsed GetHeader

Headers Host HttpMessage

HttpStatus HttpVersion IsOK

OutFile Path PeerCert

Port Redirections Secure

URL msg rc

+ resp « HttpCommand.Get 'dyalog.com'

'hr' OWC 'HTMLRenderer' ('HTML' resp.Data)

Expanding Your Application's Audience With Jarvis

21783]

resp is a namespace
that contains the
response payload, if any,
and metadata about the
response.

DVNA Fall 2025

A DYALOG USER MEETING

Ht tpCommand "Shortcut" Functions

"One time" functions:

Get - Issue a GET request
resp< HttpCommand.Get URL Params Headers

Do - Send any HTTP Command:
resp< HttpCommand.Doe Command URL Params Headers

Get JSON - Interact with JSON-based web services
resp< HttpCommand.GetJSON Command URL Params Headers

New - Create a new request instance:

req« HttpCommand.New Command URL Params Headers

Expanding Your Application's Audience With Jarvis PORNAPC T

"One time" vs "Create an Instance”

The "One time" Ht t pCommand functions (Get, Get JSON, and Do):

create, configure and run a local Ht tpCommand instance.
They send the request and return the response namespace.
The instance, being local to the function, disappears when the function exits.

No information is carried over from one invocation to the next
When you create an Ht t pCommand instance using Ht t pCommand . New:

request settings that you set persist in the instance - you don't need to respecify them
each time

HTTP cookies that are returned by the server are preserved and sent on subsequent
requests

the connection to the server remains open unless it's closed by the server

Expanding Your Application's Audience With Jarvis PORNAPC T

10

Anatomy of an HT TP Request

Create a new "POST" HTTP request to create a GitHub repository
reg«HttpCommand.New 'post' 'https://api.github.com/user/repos'

Set the authentication for the request
req. (AuthType Auth)«'bearer' GitHubAPIToken

Create parameters for the request
reg.Params<[NS "'
reg.Params.(name description)«'test-repo’' 'test repository'

req.Params<(name: 'test-repo' ¢ description:'test repository')

Expanding Your Application's Audience With Jarvis PORNAPC T

11

Anatomy of an HTTP Request

Method HttpVersion

Expanding Your Application's Audience With Jarvis

Common HTTP Methods:
GET - read a resource
POST - update a resource
PUT - replace a resource
DELETE - delete a resource

PATCH - update a resource

DVNA Fall 2025

A DYALOG USER MEETING

12

Anatomy of an HTTP Response

Httiversion HttpStatus HttpMessage
Body

HTTP/1.1

Expanding Your Application's Audience With Jarvis

DVNA Fall 2025

A DYALOG USER MEETING

https://api.github.com/repos/plusdottimes/test-repo
https://api.github.com/repos/plusdottimes/test-repo
https://api.github.com/repos/plusdottimes/test-repo

13

Using Ht tpCommand

1. Create an instance
2. Configure your request
3. Send the request

4. Inspect the response

Expanding Your Application's Audience With Jarvis

DVNA Fall 2025

A DYALOG USER MEETING

14

1. Create an instance

h«HttpCommand.New args

The following are all equivalent:

reg«HttpCommand.New 'post' 'bloofo.com' (110) ('content-type'

req<HttpCommand.New
reqg.(Command URL Params)<«'post' 'bloofo.com' (110)
req.Headers<«'content-type' 'application/json'

ns<NS "'

ns.(Command URL Params)<«'post' 'bloofo.com' (110)
ns.Headers<«'content-type' 'application/json'
req<«HttpCommand.New ns

‘application/json')

reg«HttpCommand.New (Command:'post' ¢ URL:'bloofo.com' ¢ Params: 110 ¢

Headers:'content-type' 'application/json')

Expanding Your Application's Audience With Jarvis

DVNA Fall 2025

A DYALOG USER MEETING

15

Using Ht tpCommand

1. Create an instance
2. Configure your request
3. Send the request

4. Inspect the response

Expanding Your Application's Audience With Jarvis

DVNA Fall 2025

A DYALOG USER MEETING

2. Configure your request

Command, URL, Params, and Headers are the most-commonly specified settings.
This is why they are arguments to Get, Do, GetJSON, and New.

Once you have created a request using New, you can specify any additional settings before
sending the request.

reg«HttpCommand.New 'get'
req.URL«'https://api.github.com/users/plusdottimes/repos'
req.OutFile«'/tmp/myfile.json’

req.MaxPayloadSize<«250000

req.Config A will return all settings for this request

req.Show A will return the request as it will be sent to the server

16 Expanding Your Application's Audience With Jarvis PORNAPC T

Working with Headers

Htt pCommand will generate several headers, unless you specify them yourself.
‘header-name' req.SetHeader 'value' A unconditionally set a header
‘header-name' req.AddHeader 'value' A set a header, if not already set
req.RemoveHeader 'header-name' A remove a header
req.Headers A contains the headers that you have set

‘accept-encoding' req.SetHeader A suppress an HttpCommand default header
You can use AuthType and Auth to specify the Authorization header (or set the header directly)

You can use ContentType to specify the Content-Type header (or set the header directly)

17 Expanding Your Application's Audience With Jarvis PORNAPC T

reqg.TranslateData«l

Many web services return XML or JSON payloads.

Use TranslateData<«1 to automatically translate these XML or [JJSON as appropriate
req«HttpCommand.New 'get' ‘'https://api.github.com/users/bpbecker/repos'

Fresp<«req.Run
[Frc: O | msg: | HTTP Status: 200 "OK" | #Data: 10026]

50tresp.Data
[{"id":688060385,"node_id":"R_kgDOKQL34Q","name" :"Public","full_name":"plusdotti

req.TranslateData<«1

Fresp<«req.Run
[Frc: 0 | msg: | HTTP Status: 200 "OK" | #Data: 2]

tresp.Data.(full_name created_at)
plusdottimes/Public 2023-09-06T15:08:19Z
plusdottimes/test-repo 2023-09-08T18:36:092

Expanding Your Application's Audience With Jarvis PORNAPC T

19

3. Send the request

reg«HttpCommand.New 'get'
req.URL«'https://api.github.com/users/plusdottimes/repos’

Use the Run method to send the request

Fresp<«req.Run
[rc: O | msg: | HTTP Status: 200 "OK" | #Data: 10026]

Expanding Your Application's Audience With Jarvis

DVNA Fall 2025

A DYALOG USER MEETING

20

Using Ht tpCommand

1. Create an instance
2. Configure your request
3. Send the request

4. Inspect the response

Expanding Your Application's Audience With Jarvis

DVNA Fall 2025

A DYALOG USER MEETING

21

4. Inspect the response

resp.IsOK checksthat O=rcand 2=[0.01xHttpStatus

resp.IsOK

resp.Headers A contains the response headers

resp.Data A contains the response payload

Expanding Your Application's Audience With Jarvis

DVNA Fall 2025

A DYALOG USER MEETING

Recap

1. Create an instance [23] reqg«HttpCommand.New 'get' 'someurl.com

2. Configure your request [24] reqg.TranslateData<«1
[25] 'content-encoding' req.SetHeader
[26] req.MaxPayloadSize«200000

3. Send the request [27] resp<req.Run

4. Inspect the response [28] :If resp.IsOK
[29] A code to run on success
[30] :Else
[31] A code to run on failure

[32] :EndIf

Expanding Your Application's Audience With Jarvis PORNAPC T

23

Web Service APIs

Find the API description for the service

for example, search for "github api" or "google maps api"

Authentication - some services may require an API key for usage
tracking, billing, and to mitigate misuse.

GitHub authentication

Cost - some services are free, others have a variety of billing models

Expanding Your Application's Audience With Jarvis PORNAPC T

https://www.google.com/search?q=github+api
https://www.google.com/search?q=github+api
https://www.google.com/search?q=google+maps+api
https://www.google.com/search?q=google+maps+api
https://docs.github.com/en/rest/overview/authenticating-to-the-rest-api
https://docs.github.com/en/rest/overview/authenticating-to-the-rest-api

Translating APl Examples into Ht t pCommand

GET request parameters are in the query string of the URL

https://www.alphavantage.co/query?function=INTRADAY&symbol=IBM&interval=5min

reg«HttpCommand.New 'get' 'https://www.alphavantage.co/query’
reg.Params«'function' 'INTRADAY' ‘'symbol' 'IBM' ‘'interval' 'Smin'

OR reg.Params«('function' 'INTRADAY') ('symbol' 'IBM') ('interval' 'Smin')
OR req.Params«3 2p'function’' 'INTRADAY' ‘'symbol' 'IBM' 'interval' 'Smin’
OR req.Params<[INS "'

reg.Params.(function symbol interval)«'INTRADAY' 'IBM' 'Bmin'

OR req.Params<(function:'INTRADAY' ¢ symbol:'IBM' o interval:'5min')

Expanding Your Application's Audience With Jarvis PORNAPC T

https://www.alphavantage.co/query?function=INTRADAY&symbol=IBM&interval=5min
https://www.alphavantage.co/query?function=INTRADAY&symbol=IBM&interval=5min

Translating APl Examples into Ht t pCommand

POST, PUT, DELETE request parameters are in the body of the request

curl -L \
-X POST \
-H "Accept: application/vnd.github+json" \
-H "Authorization: Bearer [--Your Token--]1" \
-H "X-GitHub-Api-Version: 2022-11-28" \
https://api.github.com/user/repos \
-d '{"name":"test-repo","description":"test repository"}'

Source: https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-
28#create-a-repository-for-the-authenticated-user

25 Expanding Your Application's Audience With Jarvis PORNAPC T

https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-28#create-a-repository-for-the-authenticated-user
https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-28#create-a-repository-for-the-authenticated-user

Translating APl Examples into Ht t pCommand

POST, PUT, DELETE request parameters are in the body of the request

Y

curl| -L |% follow any redirection
-X POST \
-H "Accept: application/vnd.github+json" \
-H "Authorization: Bearer [--Your Token--]1" \
-H "X-GitHub-Api-Version: 2022-11-28" \
https://api.github.com/user/repos \
-d '{"name":"test-repo","description":"test repository"}'

Source: https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-
28#create-a-repository-for-the-authenticated-user

26 Expanding Your Application's Audience With Jarvis PORNAPC T

https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-28#create-a-repository-for-the-authenticated-user
https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-28#create-a-repository-for-the-authenticated-user

Translating APl Examples into Ht t pCommand

POST, PUT, DELETE request parameters are in the body of the request

curl =L \

-X POST|* Command
-H "Accept: application/vnd.github+json" \

-H "Authorization: Bearer [--Your Token--]1" \

-H "X-GitHub-Api-Version: 2022-11-28" \
https://api.github.com/user/repos \

-d '{"name":"test-repo","description":"test repository"}'

Source: https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-
28#create-a-repository-for-the-authenticated-user

27 Expanding Your Application's Audience With Jarvis PORNAPC T

https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-28#create-a-repository-for-the-authenticated-user
https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-28#create-a-repository-for-the-authenticated-user

Translating APl Examples into Ht t pCommand

POST, PUT, DELETE request parameters are in the body of the request

curl -L \

-X POST \

-H "Accept: application/vnd.github+json" \

-H "Authorization: Bearer [--Your Token--]1" \
-H "X-GitHub-Api-Version: 2022-11-28" \
https://api.github.com/user/repos URL

-d "{"name":"test-repo","description":"test repository”

Source: https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-
28#create-a-repository-for-the-authenticated-user

28 Expanding Your Application's Audience With Jarvis PORNAPC T

https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-28#create-a-repository-for-the-authenticated-user
https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-28#create-a-repository-for-the-authenticated-user

Translating APl Examples into Ht t pCommand

POST, PUT, DELETE request parameters are in the body of the request

curl -L \

-X POST \

-H "Accept: application/vnd.github+json" \

-H "Authorization: Bearer [--Your Token--]1" \

-H "X-GitHub-Api-Version: 2022-11-28" \

https://api.qgithub.com/user/repos \

-d '"{"name":"test-repo","description":"test repository"}'le Params

Source: https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-
28#create-a-repository-for-the-authenticated-user

29 Expanding Your Application's Audience With Jarvis PORNAPC T

https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-28#create-a-repository-for-the-authenticated-user
https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-28#create-a-repository-for-the-authenticated-user

Translating APl Examples into Ht t pCommand

POST, PUT, DELETE request parameters are in the body of the request

curl -L \
-X POST \
-H "Accept: application/vnd.github+json" \
-H "Authorization: Bearer [--Your Token--]4=X Headers
-H "X-GitHub-Api-Version: 2022-11-28" \

https://api.github.com/user/repos \
-d '{"name":"test-repo","description":"test repository"}'

Source: https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-
28#create-a-repository-for-the-authenticated-user

30 Expanding Your Application's Audience With Jarvis PORNAPC T

https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-28#create-a-repository-for-the-authenticated-user
https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-28#create-a-repository-for-the-authenticated-user

31

Generic Steps to Using an API

Once you've identified a web service, generally you will need to:

Create a UserlD

Give some form of payment information for services that charge
for use

Generate an APl key and define the scope of use for that API key

Keep your API key securel

Use your API key in requests that need authorization

DVNA Fall 2025

Expanding Your Application's Audience With Jarvis A DYALOG USER MEETING

32

Exercises:

Using the GitHub APl documentation see if you can use HttpCommand to determine:

How many public repositories does the Dyalog organization have?
Hint: it's not 30 — look at the per page parameter

How many releases does Dyalog/Jarvis have?
Using dog.ceo
How many dog breeds do they list?

Write a picture of your favorite dog breed to file

Expanding Your Application's Audience With Jarvis PORNAPC T

33

Web Service vs. Web Server

Web Service Web Server
Uses HTTP Uses HTTP
Machine-to-machine Human interface
Variety of clients Client is typically a browser

Python, C#, APL, JavaScript using HTML/CSS/JavaScript

Specific API

Expanding Your Application's Audience With Jarvis PORNAPC T

34

Load The Exercise Materials

¢ Unzip Jarvis.zip to a folder of your choosing

e We'll use /Jarvis/ for the examples in this workshop
(You should use whatever folder name you unzipped into)

¢ Using Dyalog v19.0 or later
limport # /Jarvis

Expanding Your Application's Audience With Jarvis PORNAPC T

35

Exercise: Make a JARVIS Web Service

Jarvis is a framework that makes it easy for an APLer to deploy applications as web services.
How easy? Try this...

Jclear
sum<+#
Jload /Jarvis/Jarvis
j«Jarvis.New '
j.Start
lJload /Jarvis/HttpCommand
r<HttpCommand.GetJSON 'post' 'localhost:8080/sum' (110)
-
r.Data
Jopen http://localhost:8080
DVNA Fall 2025

Expanding Your Application's Audience With Jarvis A DYALOG USER MEETING

36

What just happened?

We defined and started a web service
Defined an "endpoint” (the sum function)
Created (using Jarvis.New) and started the server (using j .Run)
Used Ht t pCommand as a client

Used a browser to open Jarvi s' built-in HTML page that contains
a JavaScript client to communicate with the web service

Expanding Your Application's Audience With Jarvis PORNAPC T

37

What happened under the covers?

JavaScript running in the browser created an XMLHttpRequest and sent
the contents of the input window as its payload

Jarvis received the request and converted the payload to APL
Jarvis called the endpoint, passing the APL payload as its right argument
sum did its thing and returned an APL array as its result

Jarvis translated the result into JSON and sent it back to the client as the
response payload

JavaScript in the client updated the output area on the page with the
response payload

Expanding Your Application's Audience With Jarvis PORNAPC T

Jarvis' Two Paradigms

JSON REST

Endpoints are result-returning monadic or Write a function for each HTTP method your

dyadic APL functions service will support (GET, POST, PUT, etc)

All requests use HTTP POST Each function will:

Request and response payloads are JSON Take the HTTP request as its right argument
Jarvis handles all conversion between Parse the requested resource and query
JSON and APL parameters/payload

. . Take some appropriate action
Use this when your endpoints are

"functional" Consider this when you are managing
resources

38 Expanding Your Application's Audience With Jarvis PORNAPC T

39

JSON in 3 Minutes

JSON - JavaScript Object Notation
String: "this is a string"

Number: 42

Array: [1,2,"hellow world"]

Object: {"name": "value"}
ns<[NS "'
ns.(name age)<«'Dyalog' 40
array<«2 2p(2 2pi4)'Jarvis'('Dyalog’' 23)ns
OJSONE('HighRank' 'Split')rarray

([C[1,2],[3,4]],"Jarvis"],[["Dyalog",23],{"age":40,"name" :"Dyalog"}]]

Expanding Your Application's Audience With Jarvis

DVNA Fall 2025

A DYALOG USER MEETING

40

CodelLocation

Codelocation is where Jarvis will look for your Endpoint code.

CodelLocation defaultsto #

Codelocation can be the name of or reference to an existing
namespace

j.Stop
'myApp' #.ONS '' A create a namespace
myApp.Rotate«¢ na define an endpoint
j.CodelLocation<#.myApp A or '#.myApp'
j.Start

Expanding Your Application's Audience With Jarvis PORNAPC T

CodelLocation

CodelLocation can also be the name of a folder from where Jarvis
will load your code.

If the folder is a relative file name, it will be relative to the path of:
your workspace if you are running in a saved workspace
your JarvisConfig file (we'll get to what this is in a couple slides)

the Jarvi s source file

41 Expanding Your Application's Audience With Jarvis PORNAPC T

42

JarvisConfig File

You can specify all your Jarvis settings in a JSON or JSON5 file.

JSON

{
"Port": 22361,

\ "CodeLocation": "./myApp"

JSON5

{
Port: 22361,

CodelLocation: "./myApp", // JSON5 allows comments

}

Expanding Your Application's Audience With Jarvis

DVNA Fall 2025

A DYALOG USER MEETING

Filtering Endpoints

By default, Jarvis will see all result-returning, monadic, dyadic,
and ambivalent functions in CodeLocat ion and all descendent

namespaces as possible endpoints.

You canuse IncludefFns and ExcludeFns to restrict what
functions seen as endpoints.

Both can contain individual function names, simple wildcarded
expressions, or regex (or any combination thereof).

j.ExcludeFns«'x . x" "Ax'
j.IncludefFns«'GetPortfolio' 'BuyStock'

43 Expanding Your Application's Audience With Jarvis PORNAPC T

44

Exercise: Limiting Your API

j.Stop
j.CodelLocation « #
j.Start
Open your browser to localhost:8080
Look at the list of endpoints in the dropdown
Use IncludeFns and/or ExcludeFns to "hide" the functions in #.myApp

Expanding Your Application's Audience With Jarvis PORNAPC T

Debugging Jarvis

.Debug«0 A Jarvis traps all errors (default setting)
.Debug«l A Stop on error

.Debug«2 a Intentional stop before calling your code

. . . .

j.Debug«t A Intentional stop after receiving request
Codes are additive.

V r<req oops payload
[1] ocoo
\

45 Expanding Your Application's Audience With Jarvis PORNAPC T

Optional Left Argument - Request

If your endpoint function is dyadic or ambivalent, Jarvis will pass the request object as the left
argument.

The request object is the same for both JSON and REST paradigms.

AcceptEncodings Body Boundary Charset
Complete ContentType ContentTypes Cookies
Endpoint ErrorInfoLevel HTTPVersion Headers
HttpStatus Input Method Password
Payload PeerAddr PeerCert QueryParams
Response Server Session UserID

This means that some elements may not have meaning in one paradigm or the other.

For instance, in the JSON paradigm the Method is always 'POST"

46 Expanding Your Application's Audience With Jarvis PORNAPC T

User "Hooks"

There are several points (hooks) in Jarvis' flow where you can inject custom behavior.

You specify these by setting a hook setting to the name of a function to execute.

AppCloseFn - called when Jarvis shuts down

AppInitFn - called when Jarvis starts

AuthenticateFn - called on every request to authenticate the request

SessionInitFn - called when a new session is initialized

ValidateRequestFn - called on every request to perform any other validation you need

A7 Expanding Your Application's Audience With Jarvis PORNAPC T

48

Maintaining State With Sessions

If you need to maintain state between requests, Jarvis supports
sessions using the following settings:

SessionTimeout - 0 = do not use sessions, "1 = no timeout, 0< session timeout time (in minutes)
SessionIdHeader - the name of the header field for the session token

SessionUseCookie -0 = just use the header; 1 = use an HTTP cookie

SessionPol lingTime - how frequently (in minutes) we should poll for timed out sessions

SessionCleanupTime - how frequently (in minutes) do we clean up timed out session info

Expanding Your Application's Audience With Jarvis PORNAPC T

49

Exercise: Using Sessions

Stop Jarvis, if it's running
Add sessions to the service

Write a new endpoint named Add that will add its argument to a
running total kept in the session.

Use a 1 minute session timeout
Start Jarvis

Test Add

Expanding Your Application's Audience With Jarvis PORNAPC T

50

Exercise: Using Sessions

j
j
j

j.

.Stop
.SessionTimeout«l A 1 minute session timeout

.SessionInitFn«<'initSession’

SessionUseCookie<«l1

initSession«{w.Session.Total<«0}

add<{a.Session.Total -4 o.Session.Total+<«+/cw}

j.

Start

Expanding Your Application's Audience With Jarvis

DVNA Fall 2025

A DYALOG USER MEETING

51

Authenticating

AuthenticateF n specifies the name of a function to perform authentication.
AuthenticateFn should return a 0 if the authentication succeeds or is not necessary.

If you use HTTPS, you can safely transmit credentials in plaintext. Otherwise, you should be
running on a network you trust or using salt and encryption to encrypt credentials.

< Server sends “salt” 4&

Client sends Server stores
encrypt(salt passwword) salt and encrypted

2777

m]lu

Expanding Your Application's Audience With Jarvis PORNAPC T

Authenticating

Jarvis can use HTTP Basic authentication (using the HTTPAuthentication setting)

When using HTTP Basic authentication Jarvis will set the request UserID and Password settings.

Browsers will send credentials with every subsequent request.

V r<Login req
[1] A non-empty and UserID=Password

[2] r<(Oepreq.UserID)vreq.UserID#req.Password
v

j.Stop
j.AuthenticatefFn<«'Login'
j.Start

52 Expanding Your Application's Audience With Jarvis DVNA Fall 2025

A DYALOG USER MEETING

Authenticating

Jarvis can use HTTP BeAtzAEREER ication setting)

. . This site is asking you to sign in. H
When using HTTP Basic o (i ID and Password settings.

Username

Browsers will send crede |

V r<Login req
[1] A non-empty and JEEEEENES
[2] r<(0epreq.Use
v

j. StOp Sign in Cancel
j.AuthenticatefFt oJe
j.Start

Expanding Your Application's Audience With Jarvis PORNAPC T

54

Exercise: Add Authentication

Write a simple authentication function
Use the UserID and Password request fields
The function should return a 0 if the authentication passes

Set j.AuthenticatefFn to the name of your function

Start the server

Try the sample web page

Expanding Your Application's Audience With Jarvis DVINA Fall 2025

A DYALOG USER MEETING

55

Load and Examine the WebSocket Sample App

Jclear

limport # /Jarvis

Expanding Your Application's Audience With Jarvis PORNAPC T

56

Last Exercise: Change the subscribe sample

Change the subscribe function to instead return a random
"dad joke" from https://icanhasdadjoke.com.

Expanding Your Application's Audience With Jarvis PORNAPC T

57

Jarvis Work In Progress

Make Jarvis more "industrial"

Logging

HTTP logging

Error logging with email notification
Restartability
Remote monitoring / administration

Make cloud deployment easier (or at least document the process better)

Finish the documentation!

Expanding Your Application's Audience With Jarvis PORNAPC T

58

Design Questions

WebSocket Protocol

The JavaScript WebSocket API hides a lot of the underpinnings of
the WebSocket protocol.

Tools like Conga, JavaScript's XMLHttpRequest can make use of
features not available through JavaScript.

Should we support the full protocol or will JavaScript be sufficient?

Expanding Your Application's Audience With Jarvis PORNAPC T

	Slide 0: Expanding Your Application's Audience With Jarvis
	Slide 1: Agenda
	Slide 2: Goals
	Slide 3: HTTP Communications 101
	Slide 4: HTTP Communications 101
	Slide 5: HttpCommand
	Slide 6: Exercise 1: Obtaining HttpCommand
	Slide 7: Your first HttpCommand
	Slide 8: HttpCommand "Shortcut" Functions
	Slide 9: "One time" vs "Create an Instance"
	Slide 10: Anatomy of an HTTP Request
	Slide 11: Anatomy of an HTTP Request
	Slide 12: Anatomy of an HTTP Response
	Slide 13: Using HttpCommand
	Slide 14: 1. Create an instance
	Slide 15: Using HttpCommand
	Slide 16: 2. Configure your request
	Slide 17: Working with Headers
	Slide 18: req.TranslateData←1
	Slide 19: 3. Send the request
	Slide 20: Using HttpCommand
	Slide 21: 4. Inspect the response
	Slide 22: Recap
	Slide 23: Web Service APIs
	Slide 24: Translating API Examples into HttpCommand
	Slide 25: Translating API Examples into HttpCommand
	Slide 26: Translating API Examples into HttpCommand
	Slide 27: Translating API Examples into HttpCommand
	Slide 28: Translating API Examples into HttpCommand
	Slide 29: Translating API Examples into HttpCommand
	Slide 30: Translating API Examples into HttpCommand
	Slide 31: Generic Steps to Using an API
	Slide 32: Exercises:
	Slide 33: Web Service vs. Web Server
	Slide 34: Load The Exercise Materials
	Slide 35: Exercise: Make a JARVIS Web Service
	Slide 36: What just happened?
	Slide 37: What happened under the covers?
	Slide 38: Jarvis' Two Paradigms
	Slide 39: JSON in 3 Minutes
	Slide 40: CodeLocation
	Slide 41: CodeLocation
	Slide 42: JarvisConfig File
	Slide 43: Filtering Endpoints
	Slide 44: Exercise: Limiting Your API
	Slide 45: Debugging Jarvis
	Slide 46: Optional Left Argument - Request
	Slide 47: User "Hooks"
	Slide 48: Maintaining State With Sessions
	Slide 49: Exercise: Using Sessions
	Slide 50: Exercise: Using Sessions
	Slide 51: Authenticating
	Slide 52: Authenticating
	Slide 53: Authenticating
	Slide 54: Exercise: Add Authentication
	Slide 55: Load and Examine the WebSocket Sample App
	Slide 56: Last Exercise: Change the subscribe sample
	Slide 57: Jarvis Work In Progress
	Slide 58: Design Questions

