
The tool of thought for
software solutions

Dyalog Version 17.0
Dyalog Version 17.0 was released in July 2018 and is supported under
Microsoft Windows, IBM AIX, Linux (including the Raspberry Pi) and Apple
macOS. Version 17.0 is faster than any previous release of Dyalog and
contains many new additions aimed at increasing developer productivity in
a modern computing environment. This document introduces the
highlights of the release.

Performance

As usual, we have done significant performance-related work in this release. Many primitive
functions and operators have been enhanced to take advantage of vector instructions on
x64, POWER and ARM hardware. 128-bit Decimal Floating-Point operations are a factor of 2
or more faster for most operations. Many algorithms involving Booleans and small range
integers, or where one argument is a scalar, have been revisited – often with spectacular
results.

Multi-Platform/Cloud Computing

Virtually all new features are designed to work on all supported platforms. Our goal is to
make it practical to distribute the development, testing and deployment of an application
across multiple platforms. It is becoming common to develop an application under
Microsoft Windows or Apple macOS and deploy it on a cloud-based Linux platform – or run
a front-end using Dyalog for Windows, with services running under Linux on a compute
cluster or in the cloud.

Version 17.0 includes sample code for launching APL processes securely on remote
machines using secure shells (APLSSH), and examples of how to do parallel computing in the
cloud using futures and isolates. The set of cross-platform system functions for working on
files and folders has been enhanced in version 17.0, with new functions ⎕NCOPY and
⎕NMOVE, and the extension of many existing functions to work on multiple files in a single
operation.

Language Enhancements

Most enhancements to Version 17.0 have targeted interfaces and tools surrounding APL;
there is only a small number of enhancements to the core APL language.

The most significant enhancement is known as Total Array Ordering: the extension of the
primitive functions up- and downgrade (⍋⍒) and interval index (⍸) to nested arrays of any
depth. In earlier releases, the arguments had to be simple homogenous arrays containing
only numbers or characters.

The tool of thought for
software solutions

The functional coding style known as dfns requires that every statement in a function return
a result. In version 17.0, the handful of system functions that did not return a result have
been enhanced to return shy results.

Finally, a small bit of polish worth mentioning – when an APL expression fails, version 17.0 is
able to pinpoint the precise position within the failing expression of the function that issued
an error (the "caret" points to the failing function).

Remote/Portable Development Environment

A significantly enhanced version of the RIDE, our cross-platform development environment,
has been released with Dyalog version 17.0. In addition to a crisp new look, enhanced
performance when editing large functions and scripts, and many new editor features, RIDE
4.1 reinstates the floating editor windows that were temporarily lost in the migration to a
new, more portable platform for the RIDE itself (Elektron).

Dyalog version 17.0 also supports using the RIDE without first installing it on each client
computer; if the RIDE is installed on the machine where APL runs, then the interpreter can
act as a web server and make the RIDE available using any compatible web browser. The
"Zero Footprint" RIDE (so named because no client-side installation is required) has been
tested with the latest versions of Google Chrome, Mozilla FireFox and Microsoft Edge.

The tool of thought for
software solutions

Source Code Management

Saved APL workspaces, which are single files containing a snapshot of code and data which
can re-loaded in a single operation, are a convenient mechanism that remains popular with
personal and casual users of APL. Professional users are increasingly moving towards using
Unicode text files for source code. Support for source in text files is significantly enhanced in
version 17.0, with the addition of tools that will monitor source folders for changes and
automatically respond to actions performed in external source code management systems.

As an example of an enhancement that has been implemented to better support source in
text files and external source code management systems, the declaration of local variables
can now be spread out over multiple lines of code, to reduce the likelihood that changes
made by multiple developers working on independent enhancements to a function will
cause a "merge conflict" on the function header line when using source code management
tools to auto-merge changes.

Integration

Under Microsoft Windows, Dyalog has a long history of providing mechanisms for tight
integration with components written in other languages. The first integration technology
was Dynamic Data Exchange (DDE) in the 1990s followed by COM/OLE/ActiveX and, more
recently, Microsoft.NET assemblies implemented in Dyalog. Version 17.0 adds a cross-
platform mechanism for wrapping APL code as regular shared objects or dynamic link
libraries that can be called using any standard foreign function interface on just about any
platform. The mechanism produces .so files under UNIX/Linux, .dylib files under Apple
macOS, and .dll files under Microsoft Windows.

The tool of thought for
software solutions

For integration of components that can be more loosely integrated, or are running on
another machine or platform, Dyalog has provided a framework for SOAP-based web
services known as SAWS (Stand-Alone Web Service framework). SAWS is now
complemented by JSONServer, a framework for RESTful services based on the JSON protocol
– an extremely simple mechanism for quickly providing selected functions from an APL
application as a service that can easily be called from any language, running anywhere.

The shared library mechanism also supports the use of JSON as a serialization format for
arguments and results, which means that the same APL code can easily be exposed as a
shared library for use within a single machine, or as a web-based service if that is more
appropriate, for example if the service is running in the cloud.

	Dyalog Version 17.0
	Performance
	Multi-Platform/Cloud Computing
	Language Enhancements
	Remote/Portable Development Environment
	Source Code Management
	Integration

