
The tool of thought for
software solutions

Dyalog Version 18.0
Dyalog Version 18.0 was released in June 2020 and is supported under Microsoft
Windows, IBM AIX, Linux (including the Raspberry Pi) and Apple macOS. This
document discusses highlights of the release.

Additional information regarding the features mentioned below is available online, from
several sources:
• The full set of release notes for version 18.0
• Webinars:

o Introducing Dyalog version 18.0
o Language Features of Dyalog version 18.0 in Depth (part 1)

Overview

Dyalog 18.0 is another major release of Dyalog APL, delivering:
• Significant performance improvements
• A bridge to Microsoft's .NET Core under Windows, macOS and Linux (Intel and

Raspberry Pi)
• 3 new primitive APL operators (constant, atop and over)
• 1 new primitive APL function (unique mask), and extensions to primitive functions

where and partition, extending the domain from Boolean to integer
• 2 new system functions for case folding/mapping and date/time conversion
• New features to simplify the building, configuration and operation of APL systems
• Many other small improvements

Performance Improvements

Version 18.0 is another very significant release in terms of performance. As usual, we have
worked on improving the performance of many of the most widely used primitives,
focussing on set operations, searches and sorts. This time, we've also made some more
sweeping improvements, removing overheads and reworking the memory manager to
improve cache utilisation. According to our own performance test suite, overall
performance is improved by around 10%. For more information, see Dyalog version 18.0
Performance.

http://docs.dyalog.com/18.0/Dyalog%20Version%2018.0%20Release%20Notes.pdf
https://dyalog.tv/Webinar/?v=BSQr203sbWc
https://dyalog.tv/Webinar/?v=Hln3zryunsw
https://www.dyalog.com/dyalog/dyalog-versions/180/performance.htm
https://www.dyalog.com/dyalog/dyalog-versions/180/performance.htm

The tool of thought for
software solutions

.NET Core Bridge

To complement the Microsoft .NET Framework bridge, which has been available under
Microsoft Windows since Microsoft .NET was born in 2002, version 18.0 adds a very similar
interface to the new .NET Core, which is intended to replace the .NET Framework over the
next few years.

The .NET Core is an open source framework available on all platforms on which Dyalog runs
(except IBM AIX). It provides a vast collection of useful APIs for application development.
With a few exceptions, in particular some graphical libraries, these class libraries are
identical on all the platforms, providing a huge boost to cross-platform application
development and deployment.

As an example of the sort of thing that you will find in the .NET Core, the image shows the
use of the System.IO.Compression library to "Zip" a folder containing a single JSON data file
under Ubuntu Linux, achieving 98% compression (the data is highly repetitive). Also note the
use of the 'HighRank' variant on ⎕JSON, which is new in version 18.0 and automatically
splits any arrays of rank 2 or higher into lists of lists, to satisfy the constraints of the JSON
notation.

The tool of thought for
software solutions

In version 18.0, the .NET Core bridge allows the use of .NET Core libraries from APL. The
ability to export APL classes as .NET Core libraries so that APL code can be called from other
languages which support the .NET Core will follow in version 19.0.

Launching APL

Version 18.0 allows APL to directly run source files containing APL functions, operators,
classes or namespaces – without requiring a binary workspace file or a SALT .dyapp file. If
APL is started with a LOAD= parameter naming a text file, the interpreter will load the code
into the workspace, and run it if it adheres to simple conventions like defining a function
with the same name as the file, or a namespace or class containing a function/method
called Run. The example below will work on Microsoft Windows, macOS or Linux, using the
HTMLRenderer to display HTML that displays the name of the folder that the file was

located in; the screenshot was captured on Microsoft Windows.

(This is one of the examples from the webinar introducing the highlights of v18.0 – see the
link at the top of this page).

The tool of thought for
software solutions

Configuration Files

Traditionally, Dyalog has used configuration mechanisms that are native to the platform on
which it is running, for example, environment variables (on all platforms), INI files (on DOS
and Microsoft Windows) and the Registry (on Windows). To make it easier to configure
applications to run on multiple platforms, and also to allow configuration to be stored in
source code repositories along with the rest of the application source, version 18.0
introduces a text-based configuration mechanism, based on JSON5.

New Primitives

Dyalog started out as a member of the IBM APL2/STSC NARS family of APL interpreters,
closely following IBM's model of 2nd generation APL systems. Dyalog was subsequently
extended with functional programming in the form of dfns and object-oriented
programming, closely aligned with the Microsoft .NET CLR or C# model of OO. In recent
years, we have been adding features inspired by, and in some cases directly copied from,
grounded array languages systems like SHARP APL and J. Examples include the rank, key and
stencil operators, the interval index function, total array ordering (TAO) and leading-axis
emphasis on many primitives, allowing the extension of several primitives to higher rank
arrays. In addition to adding powerful features, the grounded array features facilitate the
use of simple rather than nested arrays, which provides better mechanical sympathy with
modern hardware and compiler technology.

In version 18.0, we have selected another set of primitives pioneered in SHARP APL and/or J,
for inclusion in Dyalog:

• f over g: ⍺ (f⍥g)⍵ ←→ (g ⍺) f g ⍵.
For example, compare the magnitudes of two arrays using =⍥|, which applies
absolute value to both the right and left argument before comparing them.

• f atop g: ⍺ (f⍤g) ⍵ ←→ f ⍺ g ⍵.
Useful for binding functions together in tacit expressions.

https://dyalog.tv/Dyalog18/?v=mK2WUDIY4hk
https://dyalog.tv/Dyalog18/?v=mK2WUDIY4hk

The tool of thought for
software solutions

• array constant: ⍺⍨ effectively turns an array ⍺ into a function that can be applied in
conjunction with other operators like each or rank to simplify the creation of new
arrays

• unique mask: ≠⍺ returns a Boolean vector of length ≢⍺, indicating the first
occurrence of each major cell of ⍺.
For example, (1 0 1 0 0 ≡ ≠42 42 43 43 43)

For more detail regarding the new primitives, extensions to where (⍸) and partition (⊂) and
the system functions described in the next section, see the in-depth language feature
webinars linked to at the top of this page.

New System Functions

In addition to new primitives, version 18.0 contains two new built-in library functions, one
for case mapping and folding, and one for date/time conversion. The screenshot shows the
use of the ⎕C (case conversion) system function to fold or map all character elements of an
array loaded from a CSV file using ⎕CSV, leaving all other data unchanged. A left argument

The tool of thought for
software solutions

can be provided to select one of the following options: 1 maps to upper case, ¯1 maps to
lower case, ¯3 (the default) folds arrays for case-less comparison – mostly the same as
mapping to lowercase, but with special treatment of characters like the Greek Sigma "Σ",
which has two lower-case forms "σ" and "ς" – they all fold to "σ". It also shows the use of
⎕DT, first to convert a timestamp to a day number, and finally to compute the current UTC
offset. ⎕DT is able to convert between ⎕TS-style timestamps and more than 20 different
date/time representations, including Dyalog date numbers, Julian day numbers, J, K,
JavaScipt, R and Excel date formats, component file time stamps, and so on.

Summary

Version 18.0 continues the tradition of continuous performance improvement. Since version
14.1 in 2005, the speed of language primitives, as measured by own performance suite, has
more or less doubled. Version 18.0 has language and library enhancements to improve
programmer productivity, features to simplify configuration and deployment, and an
interface to Microsoft's .NET Core. There are also numerous enhancements to the Windows
Integrated Development Environment (IDE), the cross-platform Remote IDE, improved tools
for interfacing with source code management systems (Link), and a new framework for
building web services in APL (the Jarvis framework).

https://github.com/Dyalog/Jarvis/wiki

	Overview
	Performance Improvements
	.NET Core Bridge
	Launching APL
	Configuration Files
	New Primitives
	Summary

