
APL in the Nordic Countries
Gitte Christensen

Dyalog Ltd, Hellebæk, Denmark
gc@dyalog.com

first published in History of Nordic Computing 4: 4th IFIP WG 9.7 Conference, HiNC 4

An introduction to the early years of APL and its use in the Nordic countries. The different applications
of APL are described in the context of changing conditions through the last 50 years. The evolution of
APL is outlined and the current state established. In summary this is a story of computing driven by
end-users.

1 The Early History of APL
APL was invented by the Canadian mathematician Kenneth E. Iverson (1920-2004). As the name
suggests, Iverson was of Norwegian descent. Born on a small farm in Alberta, he finished the
one-room school after 9th grade and worked on his parents' farm until he was drafted by the army in
1942.

After serving one year in the army, he transferred to the Royal Canadian Air Force and served as a
flight engineer specializing in reconnaissance. During his service, he took advantage of the Canadian
Legion's offer of correspondence education and almost finished high school. He enjoyed teaching his
service mates mathematics, and when he left the service it was with a promise to his counsellors and
mates that he would pursue an academic career in Mathematics.

After his Masters degree in Mathematics from Harvard in 1951, he did doctoral work under Howard
Aiken and Wassily Leontief – who later received the Nobel Prize in Economics. He worked on the
mathematics for extending Leontief's input/output model, and as part of this work he wrote a matrix
package for the Harvard Mark 1.

After completing his doctorate in 1954, Ken Iverson taught at Harvard for 6 years. During this period
he became increasingly frustrated with the inadequacies of traditional mathematical notation in
expressing algorithms, and he started to develop his own notation, which became known as Iverson
Notation.

When he failed to get tenure at Harvard, he moved to IBM at the recommendation of Fred Brooks,
with whom he collaborated on the continued development of his notation, and in 1962 he published
this work in the now-classic "A Programming Language". The notation Iverson had created was
consistent and concise and dealt with matrices and higher order arrays. It had none of the precedence
rules which Iverson felt were the cause of many of the inconsistencies of traditional mathematical
notation. (Smillie)

APL in the Nordic Countries 2

 2 + 3 Add two numbers
5

 1 2 3 × 1 10 100 Multiply two 3-element vectors
1 20 300

 mean←{(+/⍵)÷≢⍵} mean is sum (+/⍵) divided by count (≢⍵)
 mean ⍳4 Compute mean of the first four positive integers
2.5

Fig. 1. Simple APL expressions with output

A group at the Yorktown Heights IBM Research Center decided that this concise and consistent
notation could be made executable on a computer. The first batch system written in FORTRAN for the
IBM 7090 was quickly replaced by an interactive version for the new IBM/360, and this version served
the researchers at Yorktown Heights Center for years. The first cleanspace, a template interactive
session, was saved on November 27th 1966, which is considered the birthdate of APL. Ken Iverson
became an IBM Fellow in 1970 and received ACM Turing award in 1979:

"For his pioneering effort in programming languages and mathematical notation resulting
in what the computing field now knows as APL, for his contributions to the implementation
of interactive systems, to educational uses of APL, and to programming language theory
and practice."
(Smillie)

2 Introduction of APL to the Nordic
 Countries

2.1 Denmark

In July 1967 Hans Jørgen Helms, director of the recently established NEUCC, held a two-week summer
course on Programming Languages. It was extremely well attended, and all the major programming
language research teams were represented. There were presentations and in some cases
demonstrations of Snobol, Lisp, Algol98 – and from Yorktown Heights, Ken Iverson with APL. The
interactive APL demonstration was performed using a model 2741 typewriter terminal, with a TV
camera to make it visible to everyone.

It was still highly unusual to connect terminals to computers, but the University of Bergen had a
system/360, and Dick Lathwell, who had worked on the implementation, was dispatched to Bergen
together with a young IBM engineer, Henrik E. Nyegaard, to take care of the technical details. Per
Gjerløv, also from IBM, who had been the driving force behind the donation of an IBM 7090 to
NEUCC, was responsible for the technical set up – so he was naturally required to sit in on every single
presentation. After many presentations of complicated programming languages Per felt that APL was
a revelation. The simplicity with which programs were written in APL made an immediate impression,
and Per Gjerløv quickly became one of the most enthusiastic ambassadors for APL in Denmark, and he
later wrote an excellent book on APL.

At around the same time ØK Data had announced a time-sharing service based on BASIC. IBM did not
have a competing product lined up, and when the sales team heard about APL, things moved fast: a
System/360 model 40 was installed at Slots-herrensvej in Copenhagen, and IBM was able to offer up
to 30 simultaneous users access via regular phone lines – with reasonable response times.

APL in the Nordic Countries 3

Soon the municipal computing centre (Kommunernes EDB Central) also decided to offer a timesharing
service. The director, Johs Nielsen, was a creative man: in addition to administration tools for the
municipalities, he felt that APL should be made available to schools, so that pupils could experiment
with mathematics – in the same way that they could do experimental physics or chemistry. ØK Data
also made a bid with the BASIC service. However, despite a large number of demonstrations and
courses for teachers, APL was not adopted by the schools. Whether this was due to costs, or simply
because the current thinking was that children should be taught to "program" rather than to solve
problems on a computer, was never revealed. (Gjerløv, 2014)

At the Danish University of Technology (DTH – now DTU), professor Franksen and Peter Falster were
very early adopters, and they taught APL to electrical engineering students. Many of these engineers
subsequently embarked on careers as software developers and several are programming in APL to
this day.

2.2 Sweden

In Sweden it was Sten Kallin, also of IBM, who became the big APL ambassador. Sten was a
mathematician and had been impressed by one of the earliest uses of APL: a complete description of
the architecture of the IBM system/360 using only a few pages of APL. He installed one of the very
first versions of APL and was one of the select few who have installed APL from a deck of punch cards.
He became extremely enthusiastic and taught many APL courses. (Orrghen, 2007) Volvo became
interested and quickly installed an APL system, which engineers used to design and plan the
production of entire cars, transmission units, and other parts. Volvo's Hans Dalqvist was a proponent
and taught APL to many engineers.

Staffan Persson at Stockholms Handelshøgskola was an APL enthusiast with an interest in decision
tables, and Professor Carl-Erik Fröberg at Lund also became a fan and wrote a textbook on APL.

2.3 Finland

In 1969, IBM was also responsible for the introduction of APL to Finland: Erkki Juvonen of IBM became
the APL ambassador to Finland in the early 70's – together with his son Arto. However, the most
influential person was probably Tauno Ylinen from the ministry of Finance, who was on the board of
the Finnish Computing Centre, which provided services to governmental institutions. He was a great
advocate of APL, and the Computing Centre ran a large number of APL courses under his leadership.
Several Finnish universities taught APL, including the Helsinki University of Technology in Otaniemi,
where associate professor Lasse Hyvärinen lectured on "APL and its mathematical applications".
Although Finland was a slow starter compared to Denmark and Sweden, Finland eventually became
the Nordic country with the highest number of APL users per capita. (Olli Paavola, 2014)

2.4 Norway

Ironically, despite Iverson's Norwegian roots, APL never really aquired a following in Norway. Possibly,
the almost simultaneous creation of Simula by Ole-Johan Dahl and Kristen Nygaard at the Norwegian
Computing Center had an impact.

APL in the Nordic Countries 4

3 How APL was Used
3.1 The 1970s – Timesharing

As mentioned above, most of the early uses of APL involved timesharing systems. IBM was naturally
the first mover, but others quickly appeared on the scene. In Canada Ken Iverson and Roger Moore,
who had worked on the first APL system for IBM, convinced Ian Sharp that APL timesharing was an
exciting opportunity. In 1969, Scientific Time Sharing Corporation (STSC) was formed in the USA by
other members of the APL implementation team, and an APL timesharing system was launched,
hosted on I. P. Sharp Associates (IPSA)'s data centre in Toronto. Under the name APL*PLUS, the
system added an "object store" for APL arrays, which allowed users to develop custom databases and
other features needed by commercial applications. IPSA marketed the service in Canada and STSC in
the USA until 1972, when STSC built a data centre of its own in the USA.
(Scientific_Time_Sharing_Corporation)

In 1973 IPSA started offering timesharing in London, UK. The connection to Toronto used a
multiplexed 4800 bps channel, which was shared by clients who dialled in with 150 baud modems.
Initially the service was so poor that successful printing of an entire report was a rare occasion! By
1975, mainframes had evolved "frond end processors", and IPSA laid the foundations for IPSANET,
one of the world's first packet-switched networks. Customers made local calls to one of the IPSA
offices, connected to each other via leased lines. IPSANET quickly grew to 20 "nodes", and later
peaked at around 300 in the early 90s. In some countries where IPSA was not represented, large
clients hosted the nodes. (I._P._Sharp_Associates)

It immediately became apparent that the network provided multi-national companies like Kodak and
Xerox with an opportunity to input data to central data repositories, but IPSA also provided a
MAILBOX system (written in APL, of course!), which provided clients and customers with global
communications.

Clients typically developed their own software, representing their own business logic. There were
virtually no software packages available; IBM only started selling "Program Products" in 1973. IPSA
provided consultants to help clients develop software, and often heavily subsidised consulting, since
application development was a bottleneck preventing the flow of timesharing revenue from new
clients. As a result IPSA also accumulated a lot of knowledge about customer requirements, and by
1980 a number of applications were available "off the shelf": MABRA was an early database based on
Codd's relational model from 1970. MAGIC was a domain specific language for time-series analysis,
with complementary products like MAGICSTORE, a multidimensional time-series database and
SUPERPLOT for business graphics.

Timesharing customers were typically large companies involved in manufacturing or other forms of
international trade. Only banks and insurers could justify having computers of their own, since
computing quickly became the means of production for these companies. APL was particularly useful
to insurance companies, since almost all the calculations that they need to perform are based on
matrices. Until packages for insurance maths became readily available, APL was on the curriculum for
many actuaries.

Timesharing was also used by public organisations, using shared data centres. In Denmark, ATP, which
was formed in 1964, had a unique challenge: Registering pension contributions from all employees in
Denmark was no easy task, using the hardware and operating systems of that age. They solved the
problem by implementing their own database system in Assembler and using APL for most other
tasks: reporting, analyses, statistics and investment strategy.

APL in the Nordic Countries 5

3.2 The 1980s – APL "In House"

In terms of market share, APL peaked in the eighties, with many companies using APL to manage their
business. A variety of "midframes" became available, and many of them supported APL. Smaller and
cheaper machines put pressure on IBM, who responded with the 4300 series, which was both cheap
and reliable. Many clients took the opportunity to get off timesharing and run APL on their own
computers.

IBM never made APL a Program Product, so it was not actively sold, but you could buy it. IPSA made
SHARP APL available on the 4300 series, including all applications and connection to IPSANET so that
worldwide subsidiaries could connect to headquarters as before. SHARP APL had extremely high
performance and reliability, and the ability to perform backup/restore without taking the system
down. STSC sold add-on file systems for IBM's APL, but not the APL system as such. However, STSC
was the first company to address the other big development in the market – the first IBM PC. In 1982,
APL*PLUS was released and was an immediate success on the new PCs.

In the eighties "shrink-wrapped" products appeared on the market: Accounting systems, word
processors, database systems, and so on. Systems that had previously cost a small fortune to develop
were now available at low cost for the PC or UNIX workstations. However, large corporations were
still running large, complex systems that could not immediately be replaced by these budding
products, and there was a need to report on data collected from diverse sources. IBM provided
Information Center products, to a large extent written in APL, which allowed large organisations to
develop so-called User Service Centres.

In the early eighties IBM developed DB2. Oracle had released their RDBMS in 1979 and IBM needed a
similar offering. Programming languages needed to evolve to match the new databases, and APL was
no exception: Early APL could only support arrays containing either numbers or characters. In 1984,
IBM introduced APL2, which supported nested arrays. Nested arrays allowed numbers and characters
to be combined in the same array, which made it a good companion language for DB2. STSC, IPSA and
many other vendors immediately followed suit.

3.3 Major Nordic APL Users in the 1980s

Most of the major banks in the Nordic countries used IBM mainframes for their production, capturing
and storing all the various transactions which are the bread and butter for a bank. The databases
where the data were kept were most often developed in-house and offered only the most
rudimentary reporting facilities. With APL the users could access these data and analyse and report on
them. IBM did offer a development tool which allowed the APL developers to make data from
different sources available to the end-users who could then produce their own reports and
calculations.

Many of these applications had a striking similarity to the spreadsheets we all are used to today. The
smaller banks organised themselves with joint data centres and developed their own reporting based
on the repositories kept on the computers at the data centres.

Insurance companies also used APL to a large extent. Most actuarial calculations are table-based; APL
was a mandatory course at the actuarial studies and rumours has it that the language was named
Actuarial Programming Language in those circles.

Outside the financial sector Novo Nordisk used APL for pretty much everything. They had Sharp APL
in-house on their 4300 and later on the larger 3090 machines with MVS and VM. They had a staff of a
dozen APL programmers and used consultants extensively. They used MABRA (the SQL system from
IPSA) for administrative purposes and, when the 3270 screens became available, its successor
ViewPoint, which was an end user relational database and reporting tool that is to this day the most

APL in the Nordic Countries 6

user-friendly implementation of an SQL database the author has ever come across. They developed a
clinical trial system, a batch control system, and their statistical libraries were renowned all over the
world. They had implemented a sophisticated source code management system, which allowed them
to share utility functions and basic functionality across developers and consultants and to version
their software.

Under the management of the former airline captain Stig Eriksen, InWear managed planning,
production and financial reporting using home-made software written in MIPS APL on PRIME
minicomputers – which allowed them to become early adopters of just-in-time production.

B&O developed a management information system with interactive access from the boardroom and
modelled the Beologic system in APL. In the transport sector, A. P. Møller used APL for management
reporting and created Mærsk Data who provided APL consulting. DSB used APL for planning and
engineering. During this period a number of consulting companies thrived on APL. In Denmark,
SimCorp and IPSA were the leaders, with Datema and Mærsk Data also playing a role.

In Sweden Volvo continued their use of APL, and Sandvik built a design and production control
system. Main consultancies were Cybex and Novator.

In Finland most governmental organisations based calculations on APL services from the Finnish
Datacenter. Large corporations like Wärtsila had projects going on in APL. A Financial Statement
Analysis application was created for Postipankki, which was downsized to PC in 1984 and is still in use
by Finland's "Financial Times", Kauppalehti. Under Timo Seppäla, another Finnish proponent of APL,
TMT-Team was a major consulting force, and also represented IPSA in Finland. (Olli Paavola, 2014)

3.4 1990s – The Turn of the Tide

Microsoft Windows 3.1: The IBM PC was introduced in 1981, but it was the release of Microsoft
Windows 3.1 in 1992 that made personal computing outside the mainframe take off. Windows put
word processing, spreadsheets and (as the internet started to spread) e-mail on every desk (and a few
homes), and challenged APL on several fronts:

• Spreadsheets immediately provided a cheap, accessible alternative to APL (for simple
applications), with built-in presentation capabilities.

• The new market encouraged the growth of new businesses which "commoditized" many of the
solutions that APL had been used to prototype.

• The APL users, who had happily been doing personal computing for a decade or two on the
mainframe and had been able to produce state-of-the art applications with unique business
content, were suddenly struggling to manage their own hardware and deal with an explosion of
technical complexity.

IBM's support for APL faltered: During the 1980s, APL's ability to deliver large amounts of CPU cycles
and memory to analytical users had led to bad system performance on operating systems, which were
core components of IBM's long-term plans. Most importantly on the systems designed for high
volume transaction processing (CICS) and on early versions of TSO. Large parts of the IT community
had decided that standardization on a single programming language for everything from systems
programming to application development was a good idea, and C++ was the leading candidate. IT
professionals firmly believed that end-users should stay away from application development, and
often did what they could to sabotage any such activities. As a result, many APL applications were
downsized to PCs or re-implemented. In many cases this resulted in a significant loss of functionality
and flexibility, but the users typically had little influence on the decisions.

APL in the Nordic Countries 7

I.P.Sharp Associates was acquired by Reuters: Reuters was a major client, and purchased IPSA
(vulnerable in the face of crumbling timesharing revenue) for its collection of historical time-series
databases with global currency, commodity, and stock market prices, that IPSA had accumulated over
the previous decade. During the same period Reuters had broadcast this data but neglected to collect
it, and now PCs had created a market for technical analysis based on the data. However, Reuters had
no interest in continuing to sell APL language products.

The removal of the two biggest corporate supporters of APL on the mainframe spelled the end of that
era. Although quite a few systems are still running on mainframes today, most APL systems did move
to PCs and workstations: costs were cut significantly, and APL consulting companies found themselves
with a declining business. Having recognized the growing trend towards buying rather than
developing software, many of these companies turned to software development themselves – and
were able to use the experience gathered during the years of consulting to produce a number of
excellent products. In the Nordic region, the best known examples of this are SimCorp A/S who
developed a Treasury Management system known as SimCorp Dimension, and Adaytum Ltd., who
developed Adaytum Planning, a budgeting and planning application, in Denmark in the late 1990s.

In the USA, STSC had managed to develop a successful PC product during the 1980s and continued as
a successful, if reduced, APL vendor following the collapse of the timesharing and mainframe markets.
In the UK Dyadic Systems Ltd, a consulting company, also saw the writing on the wall and decided to
build their own APL for Unix in 1983. Dyadic immediately went bankrupt following the project, but the
reconstructed company is now a major player (under the name Dyalog Ltd.). Also in the UK, MicroAPL
Ltd produced a version for the Apple Macintosh.

3.5 The 2000s

In the "noughties", the evolution of professional IT infrastructure and professional IT staff continued.
However, it was eventually recognized that excluding subject matter experts from the development
process leads to many failed, expensive projects. The bulk of the efforts of the IT department had
been spent on storing and retrieving data, but the retrieval was only really possible if it had been
predicted by the so-called architects. As a result, much of the information about the business – which
existed somewhere within the vast amounts of data collected -- was left untouched, giving birth to
the concept of the "Data Jail House".

It became clear that the software development methodologies adhered to by the so-called
professionals were seriously flawed: Treating software development as a branch of engineering led to
strictly componentized requirement gathering, analysis, design and implementation – with multiple
communications gaps between the knowledgeable user and the programmer, who had to manifest
the program logic. Big software projects always failed, were delayed or did not have the required
functionality. The Standish Report documented that software projects with a labour cost of $1M had
a success rate of 50%, and at $10M the success rate was zero.

In [7] Extreme Programming Explained (1999) Kent Beck describes Extreme Programming as a set of
rules for agile implementation of software, which puts the user at the centre of the development
process in order to ensure that the programmer is constantly aware of the requirements and receives
continuous feedback. With some exceptions, the use of APL closely follows the rules outlined in the
above-mentioned work; APL users would claim to have invented them, although many of them have
not demonstrated the discipline that Mr. Beck would demand.

During the 2000s, APL continued to be used in many areas where the ability to combine domain
expertise with rapid development provides competitive advantage – areas like Financial Analysis,
Budgeting, Asset Management, Risk Analysis, Business Intelligence, Big Data analysis, Medical
applications and big industry business logic. In the middle of the decade, Adaytum Planning was sold
to Cognos for $160M.

APL in the Nordic Countries 8

4 The Evolution of APL
4.1 Language

Most modern APL interpreters will run APL written in 1966. However, a number of evolutionary steps
have added very significant new language features. The biggest step was the development of APL2 by
IBM (1983), which also created a major split in the community: Ken Iverson disagreed so strongly with
certain design decisions made by the team, which was headed by Dr. James A. Brown that he left IBM
for I. P. Sharp Associates, where he was responsible for an alternative design for nested arrays. This
work was the precursor for what was later to become a new language J, which Iverson designed and
implemented with Roger Hui after he retired from IPSA in 1987. Other milestones in APL language
evolution include:

1995: Control structures (if/then/else) adopted by several vendors.
1996: Optional lexical scope and lambda expressions in APL ("dfns" – Dyalog APL).
2006: Object orientation (Dyalog, MicroAPL, VisualAPL).
2014: Point-free or "tacit" syntax (from J) adopted by first APL vendor (Dyalog).
2014: Futures and isolates for parallel programming (Dyalog).

4.2 Environment

APL started on mainframes in an era where every aspect of computing was in its infancy. At that time
the system needed to drive a 24x80 monochrome screen, a printer, plus random-access,
sequential-access and possibly a keyed index file system. Vendors like STSC and SHARP added
commercial report formatting, batch sorting and an "array object store" which allowed any APL array
to be written to permanent storage. The environment remained essentially the same on the
minicomputers that became important APL platforms in the late 1970s and early 1980s, there were
APL systems for DEC, PRIME, Data General, and many more. Colour terminals and plotters with
graphics capability and relational databases arrived on the scene, but the picture did not change
much until the PC arrived.

As mentioned in section 3.4, the 1990s and early 2000s were a struggle for many APL users, as they
were bombarded with a stream of new GUI APIs, security and other demands that made life as a
combined domain-expert-and-programmer a challenge, following the serenity of the 70s and 80s.
Vendors quickly focused on Microsoft Windows and created fairly usable Win32 GUI toolkits – but the
API explosion in this dark period made it difficult to keep up, and APL lost significant market share.

The pace of hardware innovation has increased, with applications migrating to the web and to phones
or tablets, and one might suspect that life for the APL user would, therefore, deteriorate. However,
some of the technologies that have become widespread in the 2010s are helpful: through interfaces
to Microsoft.NET, Java and HTML5/Javascript, APL vendors can once again provide APL users with
usable interfaces for application development. The same interfaces make it straightforward to
provide computational components written in APL as web servers or -services. Modern platforms
support functional, dynamic languages and array-oriented interfaces based on reflection – so the
environment is generally more APL-friendly today.

APL in the Nordic Countries 9

5 Where is APL Today?
Current APL systems are modern, dynamic, multi-paradigm programming languages with a focus on
functional array-oriented programming. They support 64-bit addressing and unlimited array sizes, and
thanks to Unicode the special symbols required in APL source files are no longer an issue. Modern APL
remains a tool of thought for expressing ideas to a computer – or to other humans. It is most useful
when the domain expertise of the user is important for the outcome of the development efforts, and
where constant change is a condition. Given the complexity of modern computing environments,
successful APL teams usually embed a few software engineering experts to provide assistance with
interfacing tasks or other technical issues.

Examples of current uses of APL:

• The world's largest Patient Journal system in use is the TakeCare system used in Stockholms Län
in Sweden. More than 2.5M patients and 45,000 users mean 250,000 look-ups every day with
sub-second response time.

• APL-based research is being done in the emerging Bio Informatics area. In one example, APL's
ability to handle large arrays helps researchers analyse genome data with an ultimate goal of
creating personalised medicine. Another new APL-based application provides a visual data-
mining tool for repositories of clinical data, to help identify correlations previously hidden in the
data.

• In Finland many governmental institutions still use APL for their analysis and reporting. Statistics
Finland has created an end user application that helps organise statistical data for presentation.
This application is part of an exchange of software between statistical bureaux worldwide and is
used in more than 60 countries.

• In South Africa an APL-based smartphone app allows small businesses and individuals to quickly
forecast the viability of a business idea and its funding options.

• Another Finnish application was the winner of the "Impress" category in the 2013 apps4finland
competition: The Stormwind simulator is a stunningly realistic boat simulator intended to teach
navigation and sailing – written in APL.

Asset Management and Risk Analysis will continue to be a sweet spot for APL, because financial
markets are always in a state of flux. The value of being able to react to market changes with
software, or model the impact of new legislation before it takes effect, is enormous – so companies
like SimCorp will continue to use APL.

6 Summary
The story of APL is very much a story of end-user computing. The fact that APL was created with the
purpose of teaching and communicating ideas, and that this quality was preserved during its
implementation as an executable notation without detailing the operations of the computer, means
that new ideas can easily be applied on a computer by the inventor.

The recent realisation that successful software implementation depends on close user involvement
has been successfully proven by APL users through the last 50 years. Not only have the users been
closely involved – they have been implementing their own solutions, and they will continue to
spearhead new developments for the next 50 years.

APL in the Nordic Countries 10

References

[1] Gjerløv, P.: Personal Communication (May 2014)

[2] Wikipedia: I._P._Sharp_Associates. Copied from
http://en.wikipedia.org/wiki/I._P._Sharp_Associates (May 2014)

[3] Paavola, Olli V. M.: Personal Communication (May 2014)

[4] Orrghen, A.: Sten Kallin. Copied from
http://www.tekniskamuseet.se/download/18.6aa228912529fe96108000127/1339755
638556/7_Sten_Kallin.pdf

[5] Wikipedia: Scientific Time Sharing Corporation. Copied from
http://en.wikipedia.org/wiki/Scientific_Time_Sharing_Corporation (May 2014)

[6] Smillie, K.: amturing. Copied from
http://amturing.acm.org/award_winners/iverson_9147499.cfm (July 2014)

[7] Beck, K.: Extreme Programming Explained. Addison-Wesley, USA (1999).

http://en.wikipedia.org/wiki/I._P._Sharp_Associates
http://www.tekniskamuseet.se/download/18.6aa228912529fe96108000127/1339755638556/7_Sten_Kallin.pdf
http://www.tekniskamuseet.se/download/18.6aa228912529fe96108000127/1339755638556/7_Sten_Kallin.pdf
http://en.wikipedia.org/wiki/Scientific_Time_Sharing_Corporation
http://amturing.acm.org/award_winners/iverson_9147499.cfm

	1 The Early History of APL
	2 Introduction of APL to the Nordic Countries
	2.1 Denmark
	2.2 Sweden
	2.3 Finland
	2.4 Norway

	3 How APL was Used
	3.1 The 1970s – Timesharing
	3.2 The 1980s – APL "In House"
	3.3 Major Nordic APL Users in the 1980s
	3.4 1990s – The Turn of the Tide
	3.5 The 2000s

	4 The Evolution of APL
	4.1 Language
	4.2 Environment

	5 Where is APL Today?
	6 Summary

