
FinnAPL @ Suomenlinna, April 18th 2023

Highlights of v19.0

Morten Kromberg

Highlights of Dyalog v19.0 – May 20231

Highlights of Dyalog v19.0 – May 20232

Geoff has Retired (!)
 With John Scholes, Geoff Streeter implemented

Dyalog APL v1.0 in 1981-1983

 We hope to welcome him back for a retrospective
talk at Dyalog'24

Highlights of Dyalog v19.0 – May 20233

Geoff has Retired (!)
 With John Scholes, Geoff Streeter implemented

Dyalog APL v1.0 in 1981-1983

 We hope to welcome him back for a retrospective
talk at Dyalog'24

Highlights of Dyalog v19.0 – May 20234

Current Head
Count ~25 FTE

(from 5 in 2004)

 Admin person (UK)
 Started April 1st

 Developer / Tool Builder / Evangelist (UK)
 Started May 1st

 Full Time Tester (UK or India)
 We have a candidate who is being evaluated

 1 for the IT Department (UK)
 "Before end of 2023"

Recuiting in 2023

Highlights of Dyalog v19.0 – May 20235

Dyalog … The Next Generation

Aaron (ACE) Adam (AE) Rich (AE) Josh (A) Stine (D) Karta (C)

Silas (C) Peter (C) Jesus (E) Jada (D) Stefan (AE)

Legend:

A = APLer
C = C developer
D = Admin
E = Doc/Evangelism

Highlights of Dyalog v19.0 – May 20236

 Structural Operations on Scalars

Highlights of Version 19.0

Highlights of Dyalog v19.0 – May 20237

Highlights of Dyalog v19.0 – May 20238

Highlights of Dyalog v19.0 – May 20239

Highlights of Dyalog v19.0 – May 202310

 Installing & Managing Your System
 Keyboarding

 Multiple session files

 Health Monitor [demo]

 Building Production Systems
 Timeouts

 Token range reservation [demo]

 WS FULL handling [demo]

 NCOPY/NMOVE callbacks

 Developer Productivity / IDE
 Source "as typed" by default [demo]

 Multi-line input on by default [demo]

 HTMLRenderer updates

 Link 4.0: Crawler, Support for text data

 Namespace Improvements

 Platform Support / Distribution
 64-bit ARM support

 .NET 6/7/8 (6 by default)

 Bound executables on all platforms

Highlights of Version 19.0

Highlights of Dyalog v19.0 – May 202311

Issues:

 Dyalog IME does not work with Windows Universal Windows Platform applications

 New users report that "ctrl" is undesirable as the APL key

Immediate Solutions (v19.0):

 AutoHotkey / Downloadable keyboards for Windows which offer alternative "APL" keys
(Alt, AltGr, etc). Thanks to Kimmo Linna!

 Backtick-style keyboards for all platforms

Longer Term:

 A new IME which offers a similar experience across
supported platforms and works in and out of the IDEs
(this will take a bit longer)

Keyboarding (Mostly for New Users)
Installing &

Managing

Highlights of Dyalog v19.0 – May 202312

Earlier versions (default behaviour):

 All APL sessions read the same log
file at startup, and update the same
file at shutdown

 The last session to be closed
overwrites the log file

 In rare circumstances, multiple
starting or stopping APL interpreters
crash due to conflicts reading or
writing the log file

Version 19.0 default:

 Each APL session locks its log file

 Subsequent sessions will generate a
new file name (e.g. default-2.dlf)

 If you regularly open several
simultaneous sessions, they will
have separate logs

 NB: In all versions, you can set the
file name using LOGFILE=

Multiple session log files
Installing &

Managing

Version 19.0 log files are JSON log files

Highlights of Dyalog v19.0 – May 202313

Experimental TCP-based monitor:

 Regular updates on (for example) :

 CPU consumption

 Memory statistics

 Are any threads suspended?

)SI stack and Error information

 Notification on

 untrapped error

 ws compaction

 Exact execution location if "breadcrumbs" enabled

 Information about whether a RIDE connection is possible

Health Monitor
Installing &

Managing

Highlights of Dyalog v19.0 – May 202314

["Facts",
{"Facts": [{

"ID": 2, "Name": "AccountInformation",
"Value": {
"ComputeTime": 438,
"ConnectTime": 46973,
"KeyingTime": 0,
"UserIdentification": 0

}},{
"ID": 3, "Name": "Workspace",
"Value": {
"Allocation": 33882064,
"AllocationHWM": 33882064,
"Available": 2144207480,
"Compactions": 2,
"FreePockets": 186682,
"GarbageCollections": 0,
"GarbagePockets": 0,
"Sediment": 2120,
"Used": 3276168,
"UsedPockets": 23209,
"WSID": "CLEAR WS"

}},{
"ID": 6, "Name": "ThreadCount",
"Value": {
"Suspended": 1,
"Total": 2

}}
],
"Interval": 5000,
"UID": "1 1"
}]

["PollFacts",{"Facts":["AccountInformation","Workspace","ThreadCount"],"Interval":5000,"UID":"1 1"}]

Health Monitor Example

Highlights of Dyalog v19.0 – May 202315

 ⎕FHOLD now takes a left argument which is a timeout in
milliseconds.

 1006 TIMEOUT is signalled if the lock cannot be acquired

 ⎕SIGNAL allows signalling of 1006 TIMEOUT, which was
mis-classified as an interrupt (which it is not)

Timeouts and Interrupts
Production

Systems

Highlights of Dyalog v19.0 – May 202316

 Independent components which use ⎕TGET/⎕TPUT for
synchonisation can interfere with each other if they use
the same token ranges.

 A new system function ⎕TALLOC allocates token ranges,
allowing applications to avoid interference.

 ⎕TALLOC returns a single integer, granting the right to
use floating-point token ids in the range < n , n+1 >

 NB NOT INCLUSIVE – the integers can continue to be used by old style
non-collaborating components

 Demo will hopefully clarify the design…

Token Range Reservation
Production

Systems

Highlights of Dyalog v19.0 – May 202317

 If a WS FULL leaves VERY little free space, the interpreter
and IDE can malfunction
 For example, a runaway recursion can leave only a few kilobytes of

free workspace
 Error trapping may not be possible (system might just stop)

 Version 19.0 allocates 1% of MAXWS as a buffer which is
released on WS FULL
 Allows WS FULL traps to be safely processed

 (the reservation size is configurable)
 After successful trap handling, space is re-acquired

WS FULL Handling
Production

Systems

Highlights of Dyalog v19.0 – May 202318

 A 'ProgressCallback' variant allows you give the user a progress update

dest (⎕NCOPY ⍠ 'ProgressCallback' ('callbackfn' [larg])) src

 callbackfn will be called with a right argument of (Function Event Info)
 Function is '⎕NCOPY' or '⎕NMOVE'.
 Event is one of Start | Scan | Progress | Done
 Info is a namespace, containing

 Progress: A number between 0 and Limit
 Limit: The maximum value of Progress (nb could change)
 Last: A vector of file names processed since the last call.
 Options: See next Page

⎕NCOPY / ⎕NMOVE Callbacks Production
Systems

Highlights of Dyalog v19.0 – May 202319

The callback function can set the following Options:

 ScanFirst (default: 1): Should code do a "scan pass" before moving/copying
any files (gives "correct" Limit value).

 Delay (default: 0): ms to wait before the callback will be called again.

 Skip (default: 0): Specifies a number of files to process before the next call.

 LastFileCount (default: 1): How many of the latest filenames will be stored
in the Last field.

The result of callbackfn should be 1 if processing should
continue, else 0 (signals 1003 interrupt).

⎕NCOPY / ⎕NMOVE Callbacks Production
Systems

Highlights of Dyalog v19.0 – May 202320

 "as typed": Preserve white space, numerical constants
(well, everything) exactly as typed by the user.

 For several releases, Dyalog APL has preserved source "as
typed" if a function or operator was created using⎕FIX

 Typically by Link, with source kept in a file outside the workspace

2 ⎕FIX 'file://myapp/foo.aplf'

 From version 19.0, the default is to preserve source "as
typed" within the workspace for all fns and ops

Source "as typed" by default
Productivity

& IDE

Highlights of Dyalog v19.0 – May 202321

From version 19.0, the default is to preserve source "as typed"
within the workspace for all fns and ops
 Also applies to fns/ops with source in an external file

 Allows recovery of source from saved wss with active Links

 AutoFormat is ignored in this mode
 Configurable: can be turned off if workspace is

precious and you have a LOT of code
 An I-Beam will discard all source held in the

workspace, for example when distributing workspaces

Source "as typed" by default
Productivity

& IDE

Highlights of Dyalog v19.0 – May 202322

 ⎕ATX provides access to both canonical and verbatim sources:

Source "as typed"
Productivity

& IDE

2 ⎕FIX'R←DUP X' 'R← X X'

↑60 ⎕ATX 'DUP'
R←DUP X
R← X X

⎕CR 'DUP' ⍝ "Canonical Representation"
R←DUP X
R←X X

(↑61 ⎕ATX 'DUP')≡⎕CR 'DUP'
1

Highlights of Dyalog v19.0 – May 202323

 Multi-line input, which has been an experimental feature
for a couple of releases, will be enabled by default

 Allows entering multi-line dfns and control structures
directly in the session

]demo c:\demos\2023\multiline

Multi-line input on by Default
Productivity

& IDE

Highlights of Dyalog v19.0 – May 202324

 Most important: Find a way to easily upgrade the
Chromium Embedded Framework
 In the medium term, turn the HTMLRenderer into an

Open Source project to allow community participation

 Enhancements in v19.0
 Support Multiple windows that take turns being modal

 Hide title bar, add Handle property, a few more fixes …

HTMLRenderer updates
Productivity

& IDE

Highlights of Dyalog v19.0 – May 202325

Link 4.0 will be available with v19.0. Highlights include:

 A "Crawler" which will regularly compare the workspace
and source files and detect differences
 Will detect changes made using)COPY, assignment, ⎕FX, etc

 Alternative to the DotNet based "File System Watcher"

 Support for simple text vectors, vectors of text vectors,
and character matrices in simple text files (not ".apla")

 The Cider project manager and the Tatin package
manager will be bundled with v19.0

 More Dyalog-produced packages *will* appear

Source Code Management
Productivity

& IDE

Highlights of Dyalog v19.0 – May 202326

Link 4.0 will be available with v19.0. Highlights include:

 A "Crawler" which will regularly compare the workspace
and source files and detect differences
 Will detect changes made using)COPY, assignment, ⎕FX, etc

 Alternative to the DotNet based "File System Watcher"

 Support for simple text vectors, vectors of text vectors,
and character matrices in simple text files (not ".apla")

 The Cider project manager and the Tatin package
manager will be bundled with v19.0

 More Dyalog-produced packages *will* appear

Source Code Management
Productivity

& IDE

Link
(source)

Cider
(projects)

Tatin
(packages)

Highlights of Dyalog v19.0 – May 202327

(… many more of Kai's packages skipped …)

Highlights of Dyalog v19.0 – May 202328

 Be more tolerant of errors when fixing namespace scripts

 Do not inject references to all sibling namespaces in a nested namespace
script

 (continue to do this for classes)

 When JSON creates namespaces, provide an option to not create a
namespace hierarchy:

data←(¯1 ⎕JSON ⊃⎕NGET 'somefile.json').Data.Records

 Drawback: ## does not work within a namespace structure w/no hierarchy

Namespace Improvements
Productivity

& IDE

Highlights of Dyalog v19.0 – May 202329

64-bit ARM chips are appearing in
places that Dyalog should support:

 M1 & M2 Macs

 Raspberry Pi – 64 Bit

 Amazon Web Services "Graviton"

Arm64

ARM64

Platforms &
Distribution

Highlights of Dyalog v19.0 – May 202330

Highlights of Dyalog v19.0 – May 202331

As .NET celebrates 20 years of existence, Microsoft is pushing
everyone to move from proprietary Microsoft.Net Framework to the
new open source, cross-platform .NET.

Dyalog v18.0 added a bridge to .NET 3, to complement the 20 year
old bridge to the .NET framework.

[Microsoft].NET

Name Platforms Version Numbers
Microsoft.NET Framework Windows 1 2 4

.NET (previously ".NET Core") Windows Linux macOS 3 5 6 7 8

Highlights of Dyalog v19.0 – May 202332

 Add support for .NET 6, 7, 8 …
 Tested with 6 (and 4 – aka ".NET Framework")
 We will test with and support 8 when it is officially

released late 2023
 Export APL code as .NET assemblies

 (v18 .NET bridge can only *USE* .NET classes)
 Will allow embedding APL code in .NET frameworks like

ASP.NET Core, etc
 Support for named arguments to .NET methods
 Various other tweaks not yet finalised

v19.0 .NET Bridge

.NET 6 is the current
Long Term Support
version of .NET

Platforms &
Distribution

Highlights of Dyalog v19.0 – May 202333

A bound executable is a file which combines an interpreter
and a workspace into a single .exe file

 "Always" been available under Windows

 In v19.0, definitely also available for Linux

 Maybe also MacOS (we just hired a Mac expert)

 In the longer term, we will look at encrypting and
signing application code

Bound Executables
Platforms &
Distribution

Highlights of Dyalog v19.0 – May 202334

 Installing & Managing Your System
 Keyboarding

 Multiple session files

 Health Monitor [demo]

 Building Production Systems
 Timeouts

 Token range reservation [demo]

 WS FULL handling [demo]

 NCOPY/NMOVE callbacks

 Developer Productivity / IDE
 Source "as typed" by default [demo]

 Multi-line input on by default [demo]

 HTMLRenderer updates

 Link 4.0: Crawler, Support for text data

 Namespace Improvements

 Platform Support / Distribution
 64-bit ARM support

 .NET 6/7/8 (6 by default)

 Bound executables on all platforms

Highlights of Version 19.0

Highlights of Dyalog v19.0 – May 202335

1. WS FULL handling

2. Token Allocation

3. Health Monitor

4. Multiline Input & JSON Log Files

5. Source as Typed by Default

Demos

FinnAPL @ Suomenlinna, April 18th 2023

Highlights of v19.0

Morten Kromberg

	Slide 0: Highlights of v19.0
	Slide 1
	Slide 2: Geoff has Retired (!)
	Slide 3: Geoff has Retired (!)
	Slide 4: Recuiting in 2023
	Slide 5: Dyalog … The Next Generation
	Slide 6: Highlights of Version 19.0
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Highlights of Version 19.0
	Slide 11: Keyboarding (Mostly for New Users)
	Slide 12: Multiple session log files
	Slide 13: Health Monitor
	Slide 14
	Slide 15: Timeouts and Interrupts
	Slide 16: Token Range Reservation
	Slide 17: WS FULL Handling
	Slide 18: ⎕NCOPY / ⎕NMOVE Callbacks
	Slide 19: ⎕NCOPY / ⎕NMOVE Callbacks
	Slide 20: Source "as typed" by default
	Slide 21: Source "as typed" by default
	Slide 22: Source "as typed"
	Slide 23: Multi-line input on by Default
	Slide 24: HTMLRenderer updates
	Slide 25: Source Code Management
	Slide 26: Source Code Management
	Slide 27
	Slide 28: Namespace Improvements
	Slide 29: Arm64
	Slide 30
	Slide 31: [Microsoft].NET
	Slide 32: v19.0 .NET Bridge
	Slide 33: Bound Executables
	Slide 34: Highlights of Version 19.0
	Slide 35: Demos
	Slide 36: Highlights of v19.0

