
0

Link your code – SWEDAPL'18 Malmö

Link your code
Morten Kromberg
CXO, Dyalog Ltd.

1

Link your code – SWEDAPL'18 Malmö

Goals

• Tell a few stories about my journey
towards building APL systems from
source in text files

• Warm you up for Gil, so he can put
everything in its proper place

2

Link your code – SWEDAPL'18 Malmö

Agenda
• Why text files?
• Converting Python to APL

o Using the "PyCharm" IDE
• Look at some User commands:

o]link: a namepace and a folder
o]dbuild: bring several namespaces in
o]dtest: is it still working?

3

Link your code – SWEDAPL'18 Malmö

Why text files?

• The idea of storing APL code in text
files is hardly new...

∇ R←A RUN B
[1] →L2B×⍳A>B
[2] ... spaghetti
[....]
[471] L2B:
[472] al ragu ..
∇

4

Link your code – SWEDAPL'18 Malmö

5

Link your code – SWEDAPL'18 Malmö

6

Link your code – SWEDAPL'18 Malmö

Benefits of Text Source
• Use mainstream source code management systems

 SVN, GitHub, Mercurial, CVS, ...
 File "diff" tools etc

• Easily share code between APL versions
• Read, collaboratively write and exchange APL code

without installing an APL IDE
 Most operating systems display readable APL without

installing APL fonts
 Recent Linuxes even come with APL keyboard support built

in (thanks to Geoff!)
 New users expect it

 Not just Software Engineers; anyone who collaborated on
software will have used Git[Hub] etc

7

Link your code – SWEDAPL'18 Malmö

Project to convert Python Project to APL
• Learn a little Python

o Know your "enemy"
• Learn about the Python IDE

o Any ideas worth st... er, borrowing?
• Thanks to Romilly Cocking for

providing the example and doing some
teaching!

— —

+ +

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

j
i

h
g

f

j
i

h
g

f

e
d

c
b

a

e
d

c
b

a

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30— —

+ +

ATmega328

~R
ST

5
PC

RX
D

4
PC

TX
D

3
PC

PD
2

2
PC

PD
3

1
PC

PD
4

0
PC

VC
C

GN
D

GN
D

AR
EF

XT
AL

1
AV

CC

XT
AL

2
5

PB

PD
5

4
PB

PD
6

3
PB

PD
7

2
PB

PB
0

1
PB

PCF8574

A0
Vd

d

A1
SD

A

A2
SC

L

P0
IN

T
~

P1
7P

P2
6P

P3
5P

Vs
s

4P

330k 5%

2R
7 5%

1N
40

01

1N5

8

Link your code – SWEDAPL'18 Malmö

https://github.com/romilly/breadboarder
• Romilly is an electonics

geek
• He is developing a tool

to create "breadboard"
designs

• In Python, on GitHub

9

Link your code – SWEDAPL'18 Malmö

Working with Python

• PyCharm from JetBrains is a very
popular Python IDE

• I installed the "Community Edition"
• Will probably get the "Professional

Edition" any day now ...

10

Link your code – SWEDAPL'18 Malmö

Demo 1: Breadboarding

11

Link your code – SWEDAPL'18 Malmö

Nice Things
About Python

12

Link your code – SWEDAPL'18 Malmö

Nice Things
About Python

13

Link your code – SWEDAPL'18 Malmö

Nice Things
About Python

14

Link your code – SWEDAPL'18 Malmö

Nice things about APL

15

Link your code – SWEDAPL'18 Malmö

Nice things about APL

16

Link your code – SWEDAPL'18 Malmö

Nice things about APL

17

Link your code – SWEDAPL'18 Malmö

Really Nice thing about APL
sortstyles←{
w←⍵[⍋⍵;]
0=≢styles←⍸';'∊¨w[;2]: ⍵
w[styles;2]←{1↓∊';',¨{⍵[⍋⍵]}((~m)×1++\m←⍵=';')⊆⍵}¨w[styles;2]
w
}

fixtrailingzeros←{
0=≢i←⍸(t←⊃¨⎕VFI¨⍵[;2])∊⊂,1: ⍵
w←⍵
w⊣w[i;2]←⍕¨t[i]

}

project←⎕NEW Project
(breadboard←⎕NEW Breadboard).move_to 20 20
project.Add breadboard

svg←project.svg
pysvg←⊃⎕NGET'c:\devt\breadboarder\svg\bb-apl.svg'

(xml pyxml)←⎕XML¨ svg pysvg
xml[;4]←fixtrailingzeros¨sortstyles¨xml[;4]
pyxml[;4]←fixtrailingzeros¨sortstyles¨pyxml[;4]

r←{(≡/⍵),⍵} xml pyxml

18

Link your code – SWEDAPL'18 Malmö

Breadboarder Conclusions
• Being able to share a single project and data files on

GitHub has been a HUGE benefit for this project
• The APL code is out there for Romilly's fans to see if

they are curious
• The]link user command allowed me to

o Work interactively with APL in my customary fashion
o Have all changes immediately reflected in the code

repository
o If Romilly made any changes to the APL code, I could do a

"Git Pull" while talking to him, and immediately see his
code in my workspace

— —

+ +

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

j
i

h
g

f

j
i

h
g

f

e
d

c
b

a

e
d

c
b

a

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30— —

+ +

ATmega328

~R
ST

5
PC

RX
D

4
PC

TX
D

3
PC

PD
2

2
PC

PD
3

1
PC

PD
4

0
PC

VC
C

GN
D

GN
D

AR
EF

XT
AL

1
AV

CC

XT
AL

2
5

PB

PD
5

4
PB

PD
6

3
PB

PD
7

2
PB

PB
0

1
PB

PCF8574

A0
Vd

d

A1
SD

A

A2
SC

L

P0
IN

T
~

P1
7P

P2
6P

P3
5P

Vs
s

4P

330k 5%

2R
7 5%

1N
40

01

1N5

19

Link your code – SWEDAPL'18 Malmö

]link ns dir

20

Link your code – SWEDAPL'18 Malmö

]link ns dir

• "links" a namespace structure to a
folder structure:
o Each function, operator, class or scripted

namespace corresponds to an external file

21

Link your code – SWEDAPL'18 Malmö

Demo 2:]link

22

Link your code – SWEDAPL'18 Malmö

How it works: Changes in the Workspace

23

Link your code – SWEDAPL'18 Malmö

How it works: Changes in the Workspace
• Link attaches itself to the EditorFix callback so that it can

react to changes made by the user in the editor.

24

Link your code – SWEDAPL'18 Malmö

How it works: Changes in the Workspace
• Link attaches itself to the EditorFix callback so that it can

react to changes made by the user in the editor.
• The exact same code can be called under program control:

o ns name [oldname] ⎕SE.Link.Fix src

25

Link your code – SWEDAPL'18 Malmö

How it works: Changes in the Workspace
• Link attaches itself to the EditorFix callback so that it can

react to changes made by the user in the editor.
• The exact same code can be called under program control:

o ns name [oldname] ⎕SE.Link.Fix src
• This allows tools that search and replace or make other

changes to source code to report the changes to the link
system

26

Link your code – SWEDAPL'18 Malmö

How it works: Changes in the Workspace
• Link attaches itself to the EditorFix callback so that it can

react to changes made by the user in the editor.
• The exact same code can be called under program control:

o ns name [oldname] ⎕SE.Link.Fix src
• This allows tools that search and replace or make other

changes to source code to report the changes to the link
system

• src can either be source to use, or empty to ask link to
retrieve the source from the workspace itself

27

Link your code – SWEDAPL'18 Malmö

How it works: Changes in the Workspace
• Link attaches itself to the EditorFix callback so that it can

react to changes made by the user in the editor.
• The exact same code can be called under program control:

o ns name [oldname] ⎕SE.Link.Fix src
• This allows tools that search and replace or make other

changes to source code to report the changes to the link
system

• src can either be source to use, or empty to ask link to
retrieve the source from the workspace itself

• Functions to remove objects from the workspace, and to
register dfns/tacit functins, will be added

28

Link your code – SWEDAPL'18 Malmö

How it works: Changes to Files

29

Link your code – SWEDAPL'18 Malmö

How it works: Changes to Files
• Link uses a Microsoft.Net FileSystemWatcher to

monitor linked folders
o This is only available under Microsoft Windows; we hope to

add cross-platform support in Dyalog 18.0

30

Link your code – SWEDAPL'18 Malmö

How it works: Changes to Files
• Link uses a Microsoft.Net FileSystemWatcher to

monitor linked folders
o This is only available under Microsoft Windows; we hope to

add cross-platform support in Dyalog 18.0
• Under program control, the link system can be made

aware of changes, again by calling exactly the same
code that handles FSW callbacks:
o ⎕SE.Link.Notify type path [oldpath]
o type is one of created|changed|deleted|renamed
o path and oldpath are file names (the latter only

provided if type is "renamed"

31

Link your code – SWEDAPL'18 Malmö

The -onRead and -onWrite Hooks

32

Link your code – SWEDAPL'18 Malmö

The -onRead and -onWrite Hooks
• You can specify the names of two functions which will

be called before link does it's own processing

33

Link your code – SWEDAPL'18 Malmö

The -onRead and -onWrite Hooks
• You can specify the names of two functions which will

be called before link does it's own processing
• This allows you to

o Support file formats not supported natively by link, such as
XML, JSON, or acre .charmat and .charvec formats

o Perform additional processing in the workspace if
configuration changes

o ...etc...

34

Link your code – SWEDAPL'18 Malmö

The -onRead and -onWrite Hooks
• You can specify the names of two functions which will

be called before link does it's own processing
• This allows you to

o Support file formats not supported natively by link, such as
XML, JSON, or acre .charmat and .charvec formats

o Perform additional processing in the workspace if
configuration changes

o ...etc...
• The hooks can return 1 to allow link to perform default

processing, or 0 if the hook has done everything that
needs to be done

35

Link your code – SWEDAPL'18 Malmö

]link modifiers: Summary
]link ns directory

-source ={ ns|dir|both}
Whether to consider the ns or dir as the source (both will synchronise)
Defaults to "both" except when linking #, when it must be specified

-watch = {none|ns|dir|both} (after initial copying, default=both)

-extn = File extension considered to be APL source code (default=.dyalog)
-flatten Ignore dir hierarchy, loads everything into ns (default=off)

-prompt Prompts user to verify all synchronisation (default=off, not recommended)
-reset Removes an existing link (directory argument not required)

-onRead, -onWrite: hooks to handle files in other formats (xml, json, custom)

36

Link your code – SWEDAPL'18 Malmö

Purpose of the Link mechanism

37

Link your code – SWEDAPL'18 Malmö

Purpose of the Link mechanism
• Keep source in the workspace synchronised with files

which have a similar structure

38

Link your code – SWEDAPL'18 Malmö

Purpose of the Link mechanism
• Keep source in the workspace synchronised with files

which have a similar structure
• Changes on either side are immediately replicated on

the other
o Edit a function → file updates
o Add a new function → new file created
o Rename a folder → namespace renamed (except at the top

level)
• Direction of synchronisation is optional

o outbound, inbound, or bi-directional
o inbound only available with .NET framework in v17.0

39

Link your code – SWEDAPL'18 Malmö

Purpose of the Link mechanism

40

Link your code – SWEDAPL'18 Malmö

Purpose of the Link mechanism
• NOT a source code management or project

system.

41

Link your code – SWEDAPL'18 Malmö

Purpose of the Link mechanism
• NOT a source code management or project

system.
• Expects:

o A SCM system "below" to manage the source files
(SVN, GitHub, etc)

o A project management "on top" to manage
dependecies, building, testing etc

42

Link your code – SWEDAPL'18 Malmö

Purpose of the Link mechanism
• NOT a source code management or project

system.
• Expects:

o A SCM system "below" to manage the source files
(SVN, GitHub, etc)

o A project management "on top" to manage
dependecies, building, testing etc

• Will be available as a proper API, not just a
UCMD – to be called by project mgt systems

43

Link your code – SWEDAPL'18 Malmö

]dbuild and]dtest

44

Link your code – SWEDAPL'18 Malmö

]dbuild and]dtest
• Dyalog has used these two user command

internally since v16.0

45

Link your code – SWEDAPL'18 Malmö

]dbuild and]dtest
• Dyalog has used these two user command

internally since v16.0
• Used to build and test

o conga.dws (in v16.0)
o isolate.dws (from v17.0)

46

Link your code – SWEDAPL'18 Malmö

]dbuild and]dtest
• Dyalog has used these two user command

internally since v16.0
• Used to build and test

o conga.dws (in v16.0)
o isolate.dws (from v17.0)

• They do not yet use]link, are still based
on SALT]load
o Outward links only
o No automatic support for adding new functions

47

Link your code – SWEDAPL'18 Malmö

Demo 3:]dbuild and]dtest

48

Link your code – SWEDAPL'18 Malmö

conga

49

Link your code – SWEDAPL'18 Malmö

isolate

50

Link your code – SWEDAPL'18 Malmö

51

Link your code – SWEDAPL'18 Malmö

]dbuild "commands"
Command Use

Id, Description Metadata

Copy (path, target) Copy a file or folder

Run Not yet implemented: Call another build file

NS, Class, APL Load one or more .dyalog files

Lib Bring in a standard Dyalog tool

CSV Load a .CSV file into a matrix

LX, Defaults Set latent expression, or system variable defaults

EXEC, PROD Execute expressions (PROD = production builds only)

52

Link your code – SWEDAPL'18 Malmö

]dbuild modifiers
-clear[=NCs] expunge all objects,

(optionally of specified name classes only)
-production remove links to source files
-quiet only output actual errors

53

Link your code – SWEDAPL'18 Malmö

DTest Examples

54

Link your code – SWEDAPL'18 Malmö

DTest Examples

55

Link your code – SWEDAPL'18 Malmö

DTest Examples

56

Link your code – SWEDAPL'18 Malmö

57

Link your code – SWEDAPL'18 Malmö

]dtest "commands"

Command Use

Setup (fnlist) Listof setups to run (all tests will be repeated for each setup)

Test (fn) Name of a test function to run

Teardown Function which performs any final checks and "tears down"
what what was set up.

58

Link your code – SWEDAPL'18 Malmö

]dtest modifiers
]DTest {ns|file|path} [modifiers]

ns namespace in the current workspace
file .dyalog file containing a namespace
path path to directory containing functions in .dyalog files

Optional modifiers are:
-setup=fn run the function fn before any tests
-teardown=fn run the function fn after all tests
-tests= comma-separated list of tests to run
-filter=string only run functions where string is found in the leading ⍝Test: comment
-repeat=n repeat test n times

-halt halt on error rather than log and continue
-trace set stop on line 1 of each test function

-quiet qa mode: only output actual errors
-verbose display more status messages while running

59

Link your code – SWEDAPL'18 Malmö

]dbuild /]dtest Summary

• Implemented fast to solve an urgent
problem

• Very effective:
o allowing Dyalog to use GitHub to build

parts of the distribution

• Bit of a mess, refactoring will happen

60

Link your code – SWEDAPL'18 Malmö

Selected Dyalog Projects on GitHub
• library-core, library-conga, samples-conga (shipped folders)
• conga-apl (conga.dws)
• isolate (isolate.dws)
• link (user command)
• aplssh (Run SSH from APL)
• pynapl (Python Bridge)
• MiServer, MiSites
• JSONServer, SAWS
• WC2, Selenium
• vecdb, MatLab
• aplx (conversion tools)

61

Link your code – SWEDAPL'18 Malmö

In v17.0 (on track for May/June release)
•]link will be included
• ⎕FIX can handle functions as well as

namespaces and classes
• Locals outside of line [0] to allow easier merging
• Classes will be fix'able with missing

dependencies:

:Class MyClass : BaseClass
:Include SomeNamespace
...
:EndClass

62

Link your code – SWEDAPL'18 Malmö

The coming year...
• Work with Gil and Acre developers/

users to agree on shared guidelines for
using text files and packages or
"modules"

• All Dyalog users *must* be able to
share source files, and as many tools
as possible, in the 2nd 50 years!

63

Link your code – SWEDAPL'18 Malmö

v18.0 Targets

• FileSystemWatcher on all platforms
• Implement a format for array

constants in version 18.0
• APL Syntax Colouring "plugins" for

GitHub, VS Code, Notepad++(?)

64

Link your code – SWEDAPL'18 Malmö

v18.0 Targets

• FileSystemWatcher on all platforms
• Implement a format for array

constants in version 18.0
• APL Syntax Colouring "plugins" for

GitHub, VS Code, Notepad++(?)

65

Link your code – SWEDAPL'18 Malmö

Conclusion
• It is time for the community to adopt

common platforms for
o How to represent source code
o How to manage dependencies

• Not necessarily
o How to manage projects
o How to do testing

66

Link your code – SWEDAPL'18 Malmö

Open Source is Key

• All the tools that we develop as a
community should be open source

• Over to Gil

	Link your code�
	Goals
	Agenda
	Why text files?
	Slide Number 5
	Slide Number 6
	Benefits of Text Source
	Project to convert Python Project to APL
	https://github.com/romilly/breadboarder
	Working with Python
	Demo 1: Breadboarding
	Nice Things �About Python
	Nice Things �About Python
	Nice Things �About Python
	Nice things about APL
	Nice things about APL
	Nice things about APL
	Really Nice thing about APL
	Breadboarder Conclusions
]link ns dir
]link ns dir
	Demo 2:]link
	How it works: Changes in the Workspace
	How it works: Changes in the Workspace
	How it works: Changes in the Workspace
	How it works: Changes in the Workspace
	How it works: Changes in the Workspace
	How it works: Changes in the Workspace
	How it works: Changes to Files
	How it works: Changes to Files
	How it works: Changes to Files
	The -onRead and -onWrite Hooks
	The -onRead and -onWrite Hooks
	The -onRead and -onWrite Hooks
	The -onRead and -onWrite Hooks
]link modifiers: Summary
	Purpose of the Link mechanism
	Purpose of the Link mechanism
	Purpose of the Link mechanism
	Purpose of the Link mechanism
	Purpose of the Link mechanism
	Purpose of the Link mechanism
	Purpose of the Link mechanism
]dbuild and]dtest
]dbuild and]dtest
]dbuild and]dtest
]dbuild and]dtest
	Demo 3:]dbuild and]dtest
	conga
	isolate
	Slide Number 51
]dbuild "commands"
]dbuild modifiers
	DTest Examples
	DTest Examples
	DTest Examples
	Slide Number 57
]dtest "commands"
]dtest modifiers
]dbuild /]dtest Summary
	Selected Dyalog Projects on GitHub
	In v17.0 (on track for May/June release)
	The coming year...
	v18.0 Targets
	v18.0 Targets
	Conclusion
	Open Source is Key

