
Do Programming Language
Features Deliver on their

Promises?
Aaron W. Hsu aaron@dyalog.com, Dyalog, Ltd.

LambdaConf 2025, Estes Park, CO

mailto:aaron@dyalog.com

I am Biased

Ascetical Programming

Seen and been near legacy, work in greenfield research

Spent time in a variety of programming communities

Unique Perspective

“Design” part of programming languages

Developer Experience

Path of Least Resistance

Path of Feel Goodiness

Exploratory, not Dogmatic.
And mostly meant to be fun and comedic.

But the best comics speak the truth, no?

Rich Hickey. 2011. “Simple Made Easy”. StrangeLoop.

Simple vs. Complex ≡ Disentangled vs. Entangled

“Simplicity is prerequisite for reliability.” – Edsger Dijkstra

Simple, not Easy.

Ultimate Goal: Simplicity

Traditional Software Crisis ≡ “Unmanaged complexity”

Modern Software Crisis ≡ “Readily accessible complexity”

What are the promises?

Did it meet those promises?

What were the unintended effects?

Does it tend towards encouraging incidental complexity?

Can we reframe its use to encourage simplicity?

Development Methods, Praxis, Architecture:

Unit Testing
Microservices

Test-driven Development
REST API

Low-hanging Fruit:

Object-orientation
Inheritance

Encapsulation

Rage bait:
Many functional programmers are championing

Object-oriented Programming under the guise of FP.

Encapsulation, Inheritance, Indirection and Abstraction.

“The lie is that if something is object-oriented,
it will be easier for someone to integrate,

because it is all encapsulated.

But the truth is the opposite.”

-- Casey Muratori, Wookash Podcast, Sep 22, 2024. YT

“I also must confess to a strong bias against the fashion for reusable code. To me,
"re-editable code" is much, much better than an untouchable black box or toolkit.

I could go on and on about this. If you’re totally convinced that reusable code is
wonderful, I probably won’t be able to sway you anyway, but you’ll never

convince me that reusable code isn’t mostly a menace.”

-- Donald Knuth, InformIT Interview. Apr 25, 2008.

Token AI Slide:

Natural Language Programming

Present-day AI is very good at writing code
that never should have been written in the first place.

The value of AI for writing code is inversely proportional
to the quality of the programming language.

Just joking! But not really.

Tacit/Points-free Programming

What’s the promise?

[T]he strict use of composition results in programs that are well adapted for
equational reasoning. … The lack of argument naming gives point-free style a

reputation of being unnecessarily obscure, hence the epithet "pointless style".
-- Tacit programming - Wikipedia

https://en.wikipedia.org/wiki/Tacit_programming

“The sum of a collection of numbers divided by the count of numbers in the
collection.”

(/ (fold-right + 0 elems) (length elems))

+⌿÷≢

More concise!

Removes unnecessary names

More compositional

Less boilerplate

“Simpler expressions”

More concise! → But caused duplication

Removes unnecessary names → But introduced new ones

More compositional → For compositions of one

Less boilerplate → With more control flow

“Simpler expressions” → Substituted complexity

Incidental Complexity:
Encourages introducing more names,
just what it was supposed to reduce!

Reframing:
A valuable syntax for reducing total points of the system,

but not at the expense of introducing new names.

At scale, points-free by de-naming

⍝ Lift Lambdas to the top-level
p,←n[i]←(≢p)+⍳≢i←⍸(t=F)∧p≠⍳≢p ⍝ New nodes at top-level
t k n lx mu pos end r(⊣,I)←⊂I ⍝ Copy data to new nodes
p r I⍨←⊂n[i]@i⊢⍳≢p ⍝ Point fn bodies @ top nodes
t[i]←V ⍝ Old nodes become variables
k[i]←3+5 11⍸k[i] ⍝ …that point to lifted fns

You can reduce names without needing special syntax!

DSLs/Syntactic Abstraction

Programming Languages are not a good fit for our domain

→

Write specialized domain knowledge behind a DSL

→

Profit…?

Non-programmers won’t need programming!

Declarative solutions! Bespoke?

The tool is always ideally suited to the job!

“Right tool for the right job” is now a reality.

There’s a library for that….

PyTorch
NumPy

BLAS
SQL

ORMs
HTML
SAP

Excel
Leftpad

Leftpad
(⊃⍛⌊∘≢)↓(⊃⍴⌿)⍛⍪

Hygienic Literate Programming. ChezWEB. Scheme Workshop 2011.

Scheme, the language for writing DSLs
→

No one speaks the same language.

Every sufficiently popular DSL becomes a poorly designed
general purpose programming language (c.f. TeX)

Lesson: Tower of Babel

Collaboration and Focused Effort should transfer, not isolate

DSLs are an appeal to Jargon’s advantage,
ignoring its disadvantages

Jargon obscures common knowledge transfer more than we realized

The user is always limited by and held hostage by the implementor

Back to the beginning, what was the justification?

Language/Domain Mismatch

Design languages to address problems
concisely, directly, and simply.

Focus on holistic economy of expression as a metric.

Stop trying to hide the magic, reframe your core concepts/constructs.

Example:

Parallel programming hard.

Introduce iteration combinators (map, fold, scan) and a data-flow style of
programming as the “first language”.

Result: Parallel programming easy.

c.f. – CMU’s experiments with 1st year programming education

Caveat: I still really love syntactic abstraction,
I just can’t really justify it most places.

Dynamic Languages + Reflection
(Thanks Steven W.)

Superior Tooling Support

Monkey patching

Meta Programming

Agility/Adaptation

Richer behaviors

Ruby Compiler

→

Pain, tears, and abandonment

Endless and intractable uses of reflection

SATAN: Static Analysis Tool for APL Notation
(Brandon Wilson)

APL is highly dynamic:
Type-sensitive parsing, dynamic/lexical scope, eval-everywhere

Real World APL code is “statically dynamic”.

Reflection often encourages Indirection/Abstraction

Nothing is ever where you think it is
(paraphrasing Ed Amsden)

Most of the time, you don’t want it, you don’t need it, you shouldn’t use it.

But…

I can’t fully dismiss the value of tools and introspection.

Read-only introspection is hugely useful.

Mutable reflection is highly questionable.

There is often a spiritually static way to leverage dynamic features.

Avoid indirection.

One of my favorite tools:

The computed goto.

Sorry, not sorry.

New Feature:

24× more memory
59× more code

3× more concepts to learn
9× slower on the CPU

56x slower on the GPU

(Actually, you can’t run your code on the GPU with this new feature. So, the
slowdown is infinite.)

Hooray!

Generalized Pointers/Garbage Collection

C pointers have a nice connection with array indexing.

→

Higher level languages abstracted pointers into opaque references,
uncomputable things that encouraged data-abstraction via structures of pointers

Singular object management with malloc/free was error-prone.

GC is framed as a solution to this problem.

We already have good solutions to this without GC!

GC is actually the story of

Generalized Pointers + Infinite Lifetimes

First-class Procedures + Structured Programming

←→

Generalized Pointers + Infinite Lifetimes

Am I crazy?
“Nodejs memory leak”

Stop Node.js Memory Leaks - End-to-end Tracing + Logging AD
Preventing and Debugging Memory Leaks in Node.js

node.js - Detecting memory leaks in nodejs - Stack Overflow
Advanced Techniques for Detecting Memory Leaks in Node.js ...

Finding And Fixing Node.js Memory Leaks: A Practical Guide - Marmelab

https://betterstack.com/community/guides/scaling-nodejs/high-performance-nodejs/nodejs-memory-leaks/
https://stackoverflow.com/questions/10577704/detecting-memory-leaks-in-nodejs
https://marmelab.com/blog/2018/04/03/how-to-track-and-fix-memory-leak-with-nodejs.html

Stop relying on indefinite extent
Stop using constructors of boxed data

Stop defaulting to encapsulation and closures

Make (app/biz/logic) state global and highly controlled
Manual memory management is easy in a high-level language

Favor relational, table, entity-component,
collection-based data organization

using Struct of Arrays encodings (APL’s Inverted Table)

Sophisticated Control Flow
Recursion

Polymorphic dispatch
Callback-driven event systems

Agent-features

AKA – Structured Programming and its evil spawn.

“Goto considered harmful.”

No more spaghetti code.

Simpler code – it even has less arbitrary labels!

So foundational, people don’t even consider whether it should exist or not.

“All problems in computer science
can be solved by another level of indirection,

except for the problem of too many layers of indirection.”
– David J. Wheeler

“It is easier to move a problem around…
than it is to solve it.”

-- RFC 1925

+/⍳n
+/⌽⍳n + is associative and commutative
((+/⍳n)+(+/⌽⍳n))÷2 (x+x)÷2←→x
(+/((⍳n)+(⌽⍳n)))÷2 + is associative and commutative
(+/((n+1)⍴n))÷2 Lemma
((n+1)×n)÷2 Definition of ×

-- Notation as a Tool of Thought,
Ken Iverson, ACM Turing Award Lecture

Compare proof logics (c.f. Dijkstra) for structured programs

Recursive programs (ACL2)

Higher-order dependently typed programs

These are all fundamentally more complex.

Branching is responsible for CPUs having branch predictors,
undermining some of the most elegant CPU designs

Every branch, jump, and indirect dispatch
introduces more edges into an increasingly complex graph

In EWD249, Dijkstra especially points out the value
of constraining and disciplining control flow.

The whole model of structured programming was intended
to reduce control flow complexity.

Structured programming encourages single-item thinking

Single-item thinking encourages casing, specialization (types)

This incentivizes all the high-level branch and dispatch

Which is just fancier goto programming that Dijkstra was avoiding!

Dynamically paged, eval-dependent, goto-driven APL
developed over the course of 30+ years

Eliminate non-linear, irregular control flow

Combinators (map, fold, scan, key, stencil, etc.)

Data-parallel programming
Data-driven, data-oriented design

Compute over collections/sets/arrays, not individual items

Avoid traditional type abstraction

See tomorrow’s talk for my favorite approach to handling
inherently branchy, event-driven code

Static typing gets a pass…

Because I already ranted about it for a whole talk:
Does APL Need a Type System? at #FnConf18

But…maybe just a taste?

https://www.youtube.com/watch?v=z8MVKianh54

Static typing as I’ve heard it
has sometimes claimed elegance, but never brutal simplicity.

The story I’ve always heard is…

“We’ll make things harder on you initially,
so the machine can help you in the future.”

The code has always been more complex.

“Scrap your boilerplate”
Ralf Lammel and Simon Peyton Jones

+

Multiple follow-up papers

But…static typing has mostly delivered
on its technical promises.

It has failed to show that the trade-off is the right direction.

Conspiracy Theory: Types are a great way to make money off of PL,
particularly if you want to make money off of research grants.

Static type annotations have a generally complecting influence.

Rigorous proof systems and implicit type inference don’t suffer the same
hinderances to the code quality (simplicity).

But…systems like Rust have had a positive impact
on people willing to take more control over their own code again.

Think about the types, but design your system to make them
obvious architecturally and in your code

Don’t obscure code with static type annotations

Stop doing excessive type abstraction and attempting to hide implementation
details

(Yes, that includes you, dynamically typed folks)

Not Yet Ripe:

Formal Methods

“80% of development is spent on plumbing”
(Isaac Shapira quoting someone else)

Irony:

I avoid using all the features designed to avoid the plumbing.

But I end up writing no plumbing.

Example at “scale”

Compiler building frameworks vs Co-dfns:

A data parallel compiler hosted on the GPU.
Aaron Hsu. 2019. Indiana University.

A near-zero abstraction compiler written in APL for APL.

Now also does (context-sensitive, type-dependent) parsing
in the same style.

1500 vs. (50,000 – 100,000)

“[O]ne of my central themes will be that any two things that differ in some
respect by a factor of already a hundred or more,

are utterly incomparable.”
-- Edsger Dijkstra, EWD249

Conclusion
arcfide@sacrideo.us

Featuritis is a real thing in language design
Avoid language features that inherently introduce complexity

The use of language features is often a crutch
to avoid simplification or tackling harder root problems

https://www.sacrideo.us/last-minute-discount-for-apl-workshop/

mailto:arcfide@sacrideo.us
https://www.sacrideo.us/last-minute-discount-for-apl-workshop/

	Do Programming Language Features Deliver on their Promises?
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76

