
My Favorite Verbose 
Programming Technique

Aaron W. Hsu aaron@dyalog.com, Dyalog, Ltd.

LambdaConf 2025, Estes Park, CO

mailto:aaron@dyalog.com


I have an extreme preference 
for brutally simple, concise code.



“You can’t do X with Y.”



I can, I will.



Needs to be practical.



Needs to be a good experience,
result in better code.



My compiler became an answer to

“You can’t do tree manipulation naturally in APL.”



APL can pretty much directly express solutions
to all the problems addressed by traditional computer science

Except…

Event-driven Reactive Behaviors



What makes event-driven problems a bad fit?

Non-deterministic event arrival

Potential need to respond “immediately”



Open Question for a Long Time



I want a “good” solution!



What makes a good solution?

Inexpensive/Low-overhead
Low Abstraction

High Level
Domain-centric

Concise
Mathematical

Easy proofs of correctness
“Pen and Paper” friendly



Why those requirements?



APL as a specification language



User Requirements

→

Specification

→

Implementation

→ 

Testing



User Requirements are human language expressions of behavior



Specifications are formal definitions of user requirements



Programs are typically an implementation 
of an (implied) specification



Formal Specifications cannot be Mechanically Verified

A human is the only source of 
“the right thing”



Specification

→

Implementation



Specification

→ [Types]

Haskell/Scala/Scheme/JavaScript



Specification

→

APL



Specification

+

Implementation



APL = Specification + Implementation



Where do existing solutions fail?

Functional Reactive Programming

Callback Handlers

Event Loop over switch(event)



Where do existing solutions fail?

Assume the presence of an understood, correct specification

Rely on ad hoc assurance of completeness

Still depend heavily on human verification

Types have all these same issues



What am I afraid of?

“Have I forgotten anything?”

“Have I done anything silly?”

“Are we sure this is the right thing?”



Time to go looking for inspiration…



I’m in APL, it’s a math notation, 
what do the mathematicians do?

Basically, state machines.



What prior art exists around this sort of thing in Iverson-land?

J has a built-in state machine operator!
Documentation explicitly discusses this problem.



That’s two votes for state machines.



But they still have these issues:

Are we correct?
Did we miss anything?

Did we do something silly?



Enter Cleanroom Software Engineering…



Famous for making developers prove their code, 
without being allowed to run it.

“Write bug-free code.”



Cleanroom also taught a method of functional specification
as state machines!



The emphasis was:

Correct – Am I doing the right thing?

Complete – Am I missing something?

Consistent – Am I doing something silly?



Sequence-based Enumeration

A specific process for modeling system behavior
by building a correct, consistent, and complete

state machine based on human-language requirements



System behavior

≡

f(seq-hist, stimulus) → response



f(seq-hist, stimulus) → response

Systematically define f by:

Defining the sets of stimuli and responses

Begin systematically enumerating all possible sequence histories



For each history, consider

for each stimuli:

What is the response?

What is the “equivalent sequence?”

If no equivalent, then this is a canonical sequence
→ 

new state in the machine.



Example from Cleanroom Book: Security Alarm





Process → Specification evolution:

Stimuli Abstraction

Response Refinement



The key emphasis:

The systematic, human, exploratory process 
over the entire state space.



The primary benefit

You must confront every possible state
and make an explicit decision about your system

Pretty much eliminates your ability to have unexpected behavior

Model checkers and the like can prove nice temporal properties



Secondary Benefits

Very low overhead

Low abstraction

Flexible and general

[It’s just computed goto!]





Conclusion
arcfide@sacrideo.us

Sequence-based enumeration can be used as a foundation for defining an 
executable specification of event-driven behavior.

https://www.sacrideo.us/last-minute-discount-for-apl-workshop/

mailto:arcfide@sacrideo.us
https://www.sacrideo.us/last-minute-discount-for-apl-workshop/

	Slide 1: My Favorite Verbose Programming Technique
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

