

A Powerful Notation for Problem Solvers **Richard Park** DVALOC

Applied mathematics is largely concerned with the design and analysis of explicit procedures for calculating the exact or approximate values of various functions.

Such explicit procedures are called algorithms or programs.

Because an effective notation for the description of programs exhibits considerable syntactic structure, it is called **a programming language**.

- Kenneth E. Iverson 1962

WAPL $+ - \times \div !$ $< \leq = \neq > \geq$ $\cap \cup \in \land \lor$

Some algorithms Quadratic equation Factorial Fibonacci

Quadratic Equation

$$f(x) = 2x^2 - 9x - 5$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Factorial $F(n) = 1 \times 2 \times 3 \times \cdots \times (n-2) \times (n-1) \times n$ \boldsymbol{n} $F(n) = \begin{bmatrix} i \end{bmatrix}$ $\hat{i}=1$ n = 1 $F(n) = \begin{cases} 1\\ n \times F(n-1) \end{cases}$ n > 1

Fibonacci

$F(n) = \begin{cases} n , & n \leq 1 \\ F(n-1) + F(n-2) , & \text{otherwise} \end{cases}$

You already know APLArithmetic+- \times \div !Comparisons<</td> \leq = \neq > \geq Sets & LogicnU \in \checkmark \vee

Half of it you can just guess

φ

Ø

ŧ

Half of it you can just guess reverse φ δ

Ŧ

dyalog.tv / @dyalogapl / #dyalog

10

Half of it you can just guess ອຂາອນອາ φ ຈ ໂ

Ŧ

Half of it you can just guess reverse φ TRA NSP OSE Ø Ŧ

12

Half of it you can just guess reverse φ FZOちくと Ø AΩW ₹

Half of it you can just guess reverse φ FZOちくと Ø AΩω [7.3 ₹

Half of it you can just guess reverse φ FZOちくと Ø AΩW 8 ₹

Half of it you can just guess reverse φ FZOちらと Ø AQW 8 L7.3 ≢

Half of it you can just guess reverse φ FZOちくと Ø AQW 8 ₹

Half of it you can just guess reverse φ HZOちらと Ø AQW 8 'tally' ₹

Half of it you can just guess reverse φ HZOちらと Ø AQW 8 'tally' 5 = ≢

A tool kit that grows

PlusMinus ← + , -

Average ← +/÷≢

Some disparate notations are unified

Secant Method

$$x_n = \frac{x_{n-2}f(x_{n-1}) - x_{n-1}f(x_{n-2})}{f(x_{n-1}) - f(x_{n-2})}$$

Secant Method

Examples: Today's Problems

Cypher Nails Zoo 24

Tap Encoding

	1	2	3	4	5	
1	Α	В	С	D	Ε	
2	F	G	Н	I/J	К	
3	L	Μ	Ν	0	Ρ	
4	Q	R	S	Т	U	
5	V	W	Х	Y	Ζ	
Table 1 – Polybius Square						

TapEnc'APL' * * *** **** ***

Tap Encoding

TapEnc'APL' * * *** **** ***

Tap Encoding

TapEnc'APL' * * *** **** ***

Tap Encoding

TapEnc'APL' * * *** **** ***

Define **TapEnc** and **TapDec** which converts between a message and a tap encoding as defined by the following polybius square:

	1	2	3	4	5
1	A	В	С	D	Е
2	F	G	н	I/J	K
3	L	М	Ν	0	Ρ
4	Q	R	S	Т	U
5	v	W	х	Y	Ζ

(I/J both map to the same encoding. When decoding, always produce I instead of J.) e.g.

```
TapEnc 'APL'
* * *** **** *** *
TapDec '* * *** **** ***
APL
```

- TapDec

```
TapAlpha+'ABCDEFGHIKLMNOPQRSTUVWXYZJ'
TapKnocks+↓∘⊗1+5 5⊤-∘1
TapLocate+(⊢-(17×∘L26÷∵⊢))(TapAlpha∘ι)
```

Render←' '(1↓∘€,¨)'*'/~~~€ TapEnc←Render TapKnocks∘TapLocate

Parse←(p∘1 0∘≢⊂⊢)(≢^{**}' '∘(≠⊆⊢)) TapDec←(TapKnocks∘TapLocate^{**-1})Parse

DVALOG

Thinking in rectangles

48 Years of Microprocessor Trend Data

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2019 by K. Rupp

Rectangles are fashionable again

A Sigmoid function

$$F(x) = \frac{1}{1 + e^{-x}}$$

DAVAC

```
BackProp ← {
        A Compute the derivatives of the network parameters w.r.t. some network output.
        A \omega: consecutive layer outputs.
        A α: expected network output.
        dWs ← ⊖
       dbs + 0
       xs \leftarrow 1\downarrow\phi\omega
        dxs ← ⊂α LossFn.DLoss⊃Φω
        BP ← {
            A Auxiliary function.
            A The layers and xs are in the reverse natural order of the network,
            A while the derivative arrays are in the natural order.
            (layers xs dWs dbs dxs) \leftarrow \omega
            l ← ⊃layers
            x ← l.bias+l.weights+.×⊃xs
            db \leftarrow (\neg \phi dxs)×l.ActivationFn.DF x
            dx ← (&l.weights)+.×db
            dW ← db+.×&>xs
            (1+layers) (1+xs) (dWs, cdW) (dbs, cdb) (dxs, cdx)
        r ← BP*(≢layers) ⊢ (¢layers) xs dWs dbs dxs
        (\_ dWs dbs \_) \leftarrow r
        (\Phi dWs) (\Phi dbs)
   }
```

33

```
BP \leftarrow \{
       A Auxiliary function.
        A The layers and xs are in the reverse natural order of the network,
        A while the derivative arrays are in the natural order.
        (layers xs dWs dbs dxs) \leftarrow \omega
        l ← ⊃layers
        x ← l.bias+l.weights+.×⊃xs
        db \leftarrow (\neg \phi dxs) \times l.ActivationFn.DF x
        dx \leftarrow (Q \cup weights) + . \times db
        dW \leftarrow db + \cdot \times \delta \supset xs
        (1 \neq layers) (1 \neq xs) (dWs, = dW) (dbs, = db) (dxs, = dx)
  }
    ← 氏P*(≢)ayers) ⊢ (¢layers) xs dWs dbs dxs
     dws dbs _) ← r
  ($dWs) ($dbs)
}
```


So who's using this anyway? Business & Finance Medical Records

Karolinska Universitetssjukhuset.

Visby lasarett/Gotlands kommun.

Danderyds Sjukhus.

JL

ASIH inom Stockholms Läns Sjukvårdsområde.

Geriatrik inom Stockholms Läns Sjukvårdsområde.

Psykiatri inom Stockholms Läns Sjukvårdsområde.

Primärvård inom Stockholms Läns Sjukvårdsområde.

Nynäs vård AB.

Rehab Station Stockholm.

Ř

Stiftelsen Stora Sköndal.

Liljeholmsmottagningen.

Sophiahemmet.

Södersjukhuset, in process.

Installations in the private sector:

Stockholms Sjukhem.

Brommageriatriken AB.

Brommag

So who's using this anyway? **Business & Finance Medical Records** Science NMR DNA **Oil refinery Computer Science Co-dfns**

A B E F G L M N O P V Z	
A 0 1 2 3 4 5 6 7 8 9 10 11	
tt←{[[←'C' ◊ ((d t k n)exp sym)←ω ◊ I←{(⊂ω)[]α}	
r←I@{t[w]≠3}※≡~p⊣2{p[w]←a[a <u>ı</u> w]}≁⊢∘⊂目d⊣p←ı≢d	A PV
p,←n[i]←(≢p)+ı≢i← <u>ı</u> (t=3)∧p≠ı≢p ◊ t k n r,←3 1 0(r[i])p~"≢i	A LF
p r I∺←⊂n[i]@i⊢ı≢p ◊ t k(⊣@i~)←10 1	
i←(<u>ı</u> (~t∈3 4)∧t[p]=3),{ω/~2 ı≢ω} <u>ı</u> t[p]=4 ◊ p t k n r/~←⊂m←2@i⊢1p~≠p	D A WX
p r i I~←cj←(+\m)-1 ◊ n←j I@(0≤⊢)n ◊ p[i]←j←i-1	
k[j]←-(k[r[j]]=0)∨O@({⊃φω}目p[j])⊢(t[j]=1)∨(t[j]=2)∧k[j]=4 ◊ t[j]↔	-2
p[i]←p[x← ⁻ 1+i←{ω/~~2 ι≢ω} <u>ι</u> t[p]=4] ◊ t[i,x]←t[x,i] ◊ k[i,x]←k[x,i]] ALG
n[x]←n[i] ◊ p←((x,i)@(i,x)⊢ı≢p)[p]	
n[p≠~(t[p]=2)^k[p]=3]+←1	A CI
p[i]←p[x←p I@{~t[p[ω]]∈3 4}※≡i← <u>ı</u> t∈4,(ı3),8+ı3] ◊ j←(¢i)[≰¢x]	A LX
p t k n r{a[ω]@i⊢a}←cj ◊ p←(i@j⊢ı≢p)[p]	
s← ⁻ 1,~eı¨n[∪x]+⊢o≢目x+0]\e+∪Io4~rn+r[b],,n[b+ <u>ı</u> t=1]	A SL
d←(≢p)↑d ◇ d[i← <u>ı</u> t=3]←0 ◇ _←{z⊣d[i]+←ω≠z←r[ω]}※≡i ◇ f←d[0[\@e], ⁻ 1	A FR
xn←n/~(t=1)^k[r]=0	A XN
v← <u>ı</u> (n< ⁻ 4)∧(t=10)∨(t=2)∧k=4 ◊ x←n[y←v,b] ◊ n[b]←s[eırn] ◊ i←(≢x)ρc	:←≢e A AV
_←{z/~c=i[1[]z]←eι&x I@1⊢z←r I@0⊢ω}*≡(v,r[b]),&,ι≢x	
f s←(f s I"ci)⊣@y"c ⁻ 1p~≢r	
ptknfsrdxnsym}	

A Co-dfns: Thesis Edition

A B E F G L M N O P V Z		
0 1 2 3 4 5 6 7 8 9 10 11		
tte-(Be-'C' o ((d t k n)exn syn)-u o le-((cu)ta)		
- 18(+(u)-2)== 2/a(u) afaiu)// - Bd a - idd	100	DHA
1 - 16(([0] + 5) + 0 + 2 (p (0) - 0 (0 (0)) + + (0 0 + + (0 0 + + (0 0 + + () + (0 + + (0 + + (0 + + (0 + + (0 + + (0 + + (0 + + (0 + + (0 + + (0 + + (0 + + (0 + + (0 + + (0 + + (0 + + (0		11
p,-n[1]-(#p)+1#1-j(t=3)^p*1#p * t k n r,-3 1 0(r[1])p~ #1	A.	ur.
p r I~⊷cn[i]@i⊢t#p ♦ t k(-@i~)⊷10 1		
$i \leftarrow (i(-te3 \ 4) \land t[0]=3), \{u \neq 2 \ i \neq u\} \land t[0]=4 \land 0 \land t \land n \land r \neq n \leftarrow 28i \leftarrow 10 \rightarrow r0$		WX .
n r i lämrim (+hm)-1 o nmi 18(8cm)n o n[i]mimi-1		
h[i](h[e[i]]-0)+00((-++)0e[i])++[i]-1 + +[i]2		
afil af a f f f f a share a f a f a f a f a f a f a f a f a f a		10
$p[1] \leftarrow p[x \leftarrow 1+1 \leftarrow \{up \leftarrow v[t, w] \subseteq [t] = 4] \circ t[1, x] \leftarrow t[x, 1] \circ k[1, x] \leftarrow k[x, 1]$	8	L0
n[x]⊷n[i] ◊ p⊷((x,i)@(i,x)+t#p)[p]		
n[p/=(t[p]=2)^k[p]=3]++-1	A.	13
<pre>p[i]+p[x+p 18(+t[p[w]]e3 4)*=i+te4.(13).8+13] o i+(0i)[i0x]</pre>		LX.
n t k n r(a[u]Bina)-ci s n=(iBinian)[n]		
The second		
SHE I, HEL DLOXIH HANDER OF TANDER OF ALL HAND HELD I, TUDE TELL	я.	SL.
$d \leftarrow (xp) [d \circ d[1 \leftarrow]t=3] \leftarrow 0 \circ _ \leftarrow \{2 \leftarrow d[1] \leftarrow a \neq 2 \leftarrow r[a]\} \leftarrow 1 \circ f \leftarrow d[0] \in [1, 1]$	H.	FR.
xn⊷n/~(t=1)∧k[r]=0		XN
$y \leftarrow z(t=10) \text{ and } 4 \circ x \leftarrow n[y \leftarrow y, b] \circ n[b] \leftarrow s[errn] \circ i \leftarrow (xx) ac \leftarrow xe$		AV
-(2/20=1[1]2]-erby 101-2-0 100-0]20(0 c[b])-b-144		
for (for theil Artistance of the fore due and)		

So who's using this anyway? **Business & Finance Medical Records** Science NMR DNA **Oil refinery Computer Science Co-dfns** Simulation: https://stormwind.fi/

Where to find out more? tryapl.org apl.wiki apl.chat dyalog.tv

42

DAVAC

Why learn APL?

A tool of thought Think in rectangles

Kattis

Why should I start learning today? **Annual APL Problem Solving Competition** Launched this week Compete for \$\$\$ Previous winners learned APL while participating **Referral** awards dyalogaplcompetition.com