
Page 1 of 20

2013 APL Problem Solving Competition – Phase II Problem Descriptions

This year, the problems in Phase II are divided into three sets representing three general categories:

Math/Computer Science, Engineering and Biology. Unlike previous years, you do NOT need to solve all the Phase

II problems to be considered eligible for the top three prizes. Instead, each set has three problems - one each of

low, medium and high difficulty levels. To be eligible for consideration for one of the top prizes you need to

complete, at a minimum, one problem of each level of difficulty. The problems can be from different sets. Higher

difficulty problems may be substituted for lower difficulty problems – for instance, you could solve two medium

difficulty problems and one high difficulty problem.

You can also solve more than the minimum number of problems; you can solve all the problems if you choose to

do so. Doing more work by solving more problems can work in your favor; if entries from two people are of

similar quality but one has solved more or higher difficulty problems, that entry will receive higher consideration

by the judging committee.

Good Luck and Happy Problem Solving!

Page 2 of 20

Description of the Contest2013 Template Files

Two template files are available for download from the contest website. Which file you use depends on how you

choose to implement your problem solutions.

If you use Dyalog APL, you may use the template workspace Contest2013.DWS

The Contest2013 workspace contains:

 #.Problems – a namespace in which you will develop your solutions and which itself contains:

o Stubs for all of the functions described in the problem descriptions. The function stubs are

implemented as traditional APL functions (trad-fns), but you can change the implementation to

dynamic functions (d-fns) if you care to do so. Either form is acceptable.

o Any sample data elements mentioned in the problem descriptions

o Any sub-functions you develop as a part of your solution should be located in #.Problems

 #.SubmitMe – a function used to package your solution for submission.

 The #.Chart and #.Graph functions described in the Biology problem set and the subset of RainPro,

Dyalog's graphics package, necessary for #.Graph.

Make sure you save your work using the)SAVE system command!

Once you have developed and are ready to submit your solutions, run the #.SubmitMe function, enter the

requested information, and click the "Save" button. #.SubmitMe will create a file Contest2013.dyalog which will

contain any code or data you placed in the #.Problems namespace. You will then upload Contest2013.dyalog file

via the contest website.

If you use some other APL system, you may use the template script file Contest2013.dyalog

This file contains the correct structure for submission. You may populate it with your code, but do not change the

namespace structure. Once you have developed your solution, edit the variable definitions as indicated at the top

of the file and upload the file via the contest website.

Page 3 of 20

Math/Computer Science Problem Set

 Polyominoes - The Shapes of Things to Come…

From Wikipedia: "A polyomino is a plane geometric figure formed by joining one or more equal squares edge to

edge. It may be regarded as a finite subset of the regular square tiling with a connected interior. Polyominoes are

classified by how many cells they have."

Number of cells Name

1 Monomino

2 Domino

3 tromino or triomino

4 Tetromino

5 Pentomino

6 hexomino

7 heptomino

8 octomino

9 nonomino or enneomino

10 decomino

11 undecomino or hendecomino

12 dodecomino

A polyomino can be rotated in 90° increments as well as reflected along its horizontal or vertical axis. While the

monomino is fairly boring in this respect, higher order polyominoes get more interesting. For instance, the

“L” tetromino can be presented in 8 different ways. The video game “Tetris” familiarized millions of people with

this concept.

Page 4 of 20

Problem 1 (low difficulty) – One of These Things Is Not Like the Other…

Given two Boolean matrices that each contain a polyomino, write an APL function named SimilarPoly that

returns 1 if the second polyomino is some combination of rotation and/or reflection of the first polyomino and 0

otherwise. The left and right arguments for SimilarPoly are the Boolean matrices.

Example:

 ⎕←p1←2 3⍴1 0 0 1 1 1
1 0 0
1 1 1

 ⎕←p2←2 3⍴0 1 0 1 1 1
0 1 0
1 1 1

 ⎕←p3←3 2⍴1 1 0 1 0 1
1 1
0 1
0 1

 ⎕←p4←3 4⍴0 0 0 0 0 1 0 0 0 1 1 1
0 0 0 0
0 1 0 0
0 1 1 1

 p1 SimilarPoly p2
0

 p1 SimilarPoly p3
1

 p1 SimilarPoly p4
1

Page 5 of 20

Problem 2 (medium difficulty) – In Good Shape?

As seen in Problem 1, a polyomino can be represented by a Boolean matrix. However, not all Boolean matrices

represent valid polyominoes. Write an APL function named ValidPoly which, when passed a Boolean matrix,

will return a 1 if the matrix represents a valid polyomino and a 0 otherwise:

Examples:

 ⎕←p1←1 1⍴1
1

 ValidPoly p1
1

⎕←p2←2 3⍴1 1 1 0 1 0
1 1 1
0 1 0

ValidPoly p2
1

⎕←p3←2 3⍴1 0
1 0 1
0 1 0

ValidPoly p3
0

⎕←p4←3 3⍴1 1 1 1 0
1 1 1
1 0 1
1 1 1

ValidPoly p4
1

Page 6 of 20

Problem 3 (high difficulty) –Polyominoes - The Next Generation…

"Free" polyominoes are the shapes distinct from any other – that is, they're not a translation, rotation or

reflection of another polyomino. Think of "Free" polyominoes as being the unique shapes from which other

polyominoes can be created through some combination of rotation and/or flipping.

For instance, are 8 representations of the same free polyomino.

The table below shows the number of free polyominoes based on the number of cells polyomino.

Number of cells Name Free Polyominoes

1 monomino 1

2 domino 1

3 tromino or triomino 2

4 tetromino 5

5 pentomino 12

6 hexomino 35

7 heptomino 108

8 octomino 369

9 nonomino or enneomino 1285

10 decomino 4655

11 undecomino or hendecomino 17073

12 dodecomino 63600

Write an APL function named PolyGen which, when passed an integer representing the number of cells, will

compute and return a vector of Boolean matrices representing the set of free polyominoes for that number of

cells. While your solution should work for any number of cells, it will only be validated up to octominoes. The

elements of the result set can be in any order.

Example:

 PolyGen 4
 1 1 1 1 0 1 0 1 1
 1 1 0 1 1 1 1 1 1
 1 1 0 1 0 0 1
 1

Page 7 of 20

]disp PolyGen 4 ⍝ you can use the]disp user command to show structure
┌→┬───┬───┬───┬───┐
│1│1 1│1 0│1 0│ │
│1│1 0│1 1│1 1│1 1│
│1│1 0│1 0│0 1│1 1│
│1↓ ↓ ↓ ↓ ↓
└→┴~─→┴~─→┴~─→┴~─→┘

Page 8 of 20

Engineering Problem Set

 The Duck Test (for background see http://en.wikipedia.org/wiki/Duck_test)

Dyalog has just released APL for the Raspberry Pi and is using this to build a robot – if you are interested, you can

read about this project on our blog at http://cto.dyalog.com. A “PiCam” has become available, and we are eagerly

awaiting the delivery of a camera for our robot. At the moment the cameras are in such high demand that they

will not be available to us until after the deadline for the programming contest, so we thought we would get some

free programming help to prepare to do image processing while we wait for the camera to arrive!

Problem 1 (low difficulty) - Get the Picture?

We’ll limber up with an imaginary black-and-white camera that creates images containing only 0 for white and 1

for black – and we’ll carefully make sure that there is only one black

object in the camera’s field of view while we practice our skills.

Given a matrix representing an image containing a single black object

taken by a black-and-white digital camera, we want to determine the

position of the object. Write a function FindCG which will return the co-

ordinates of the “center of gravity” of the object, imagining that each

pixel has the same weight. For example:

 img001
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0
0 1 1 1 1 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

 2⍕FindCG img001 ⍝ Format result to 2 decimals
 ¯1.83 ¯0.61

Note that, since we have an even number of pixels on both dimensions, integer co-ordinate positions are

“between” the columns of pixels; the center of the top left pixel has co-ordinates (¯4.5 3.5).

http://en.wikipedia.org/wiki/Duck_test
http://cto.dyalog.com/

Page 9 of 20

Problem 2 (medium difficulty) - But where *is* that exactly?

We have now mounted our 8 by 10 black and white camera on a robot so that it can take pictures in the direction

ahead of it:

To avoid (or attack!) obstacles, our robot needs to translate the co-ordinates of objects in the digital image into

geographical co-ordinates on the ground. We will make a couple of assumptions: first, that the floor the robot is

driving on is perfectly horizontal. Second, since we can only guess at the shape of the objects, we will assume that

a point in the image which is vertically below the center of gravity, half-way down toward the lowest observed

point, is a good estimate for a point that is resting on the floor.

Our lens and image sensor have characteristics that allow us to think of each pixel as representing a 1x1cm square

on a virtual image projected onto an 8cm by 10cm screen, mounted 5cm in front of the observer (camera). The

camera is mounted 10cm above the ground.

Write a function Locate that takes the same argument as FindCG, but returns a 2-element vector that must

contain the estimated X (negative left, positive right) and Y co-ordinates (forward) of a point where the viewed

object is resting on the ground (distances to be reported in centimeters). Using the same input as above:

 1⍕ Locate img001
 ¯17.4 47.4

Page 10 of 20

Problem 3 (high difficulty) – Quacker Tracker

Our camera has been upgraded, it now produces images in 16 colors – and the resolution has increased to an

incredible 80 by 100 pixels! Just in time, because a bunch of yellow ducks have escaped, and we’d like to use our

robot to locate them for us (we’ll discuss what to do with them later). The geometry is the same as in problem 2,

but now we’re getting an image in which each pixel represents a 1mm by 1mm square projected onto our virtual

screen – and in color:

Robots-eye view: 80 by 100 pixels, 16 colour bitmap

The ducks are trying to hide in a room that also contains a number of yellow balls, hoping that the image

recognition algorithm will be unable to tell the difference between ducks and balls. The good news is that the

ducks don’t like each other (or the balls) very much, so they are staying apart - this means that they don’t overlap

in our pictures.

Write a function FindDucks that estimates the location and size of all ducks visible in the image. The right

argument will be an 80 by 100 integer matrix with colour numbers, where 11 represents yellow. The result must

be a matrix with one row for each duck and three columns containing values in centimeters that give:

 [;1] The distance left (negative) or right (positive) from the robot's centerline

 [;2] The “forward” distance from the camera to the duck

 [;3] The estimated height of the duck

Page 11 of 20

For example:

 1 ⍕FindDucks img002
 ¯5.6 28.8 9.2
 14.8 21.2 10.2
 ¯11.0 17.0 8.1

 ⍴img002
80 100

The data for the above example can be found as the variable named img002 in the contest workspace. It can also

be found in the file img002.bmp, which is a Windows bitmap file accessible using the ‘BitMap’ object – and

finally it is provided as a text file containing one row of numbers per line called img002.txt (if you are running

on a platform without bitmap support in APL).

Page 12 of 20

Biology Problem Set

 Cute as a bunny, cunning as a fox…

One of APL's many uses is building models of systems. In this problem set, we'll explore population models.

Problem 1 (low difficulty) - Life on the Wild Side

The goal of this problem is to build a simple population density model. Our model assumes that the population

density of an organism has an equilibrium point; if the density exceeds this point, then the population will

decrease and if the density is below the equilibrium, then it will increase. The rate at which the population

increases or decreases has a linear dependence on the distance from the equilibrium. The following equation can

be used to model the population for the next generation based on the current generation's observed population.

 (())

Where:

 = equilibrium population density

 = observed population density

 = slope of the reproductive curve

 = generation number

Write two APL functions. The first, NextGen, takes as its right argument a 3-element vector comprising the slope

of the reproductive curve, the equilibrium population size and the observed population and returns the

population of the next generation. If the population decreases to 0 (or less), then it must return 0 (representing

extinction). If the population grows so large that a DOMAIN ERROR occurs, then it must return the value ⌊/⍬,

which is the largest representable number and for our purposes here can be considered infinity.

Example:

 B←.011 ⍝ slope of the reproductive curve
 Neq←100 ⍝ equilibrium population density
 N←10 ⍝ observed population density
 ⎕PP←5 ⍝ set print precision to 5

 ⎕←g1←NextGen B Neq N ⍝ compute generation 1
19.9

 ⎕←g2←NextGen B Neq g1 ⍝ compute generation 2
37.434

 ⎕←g3←NextGen B Neq g2 ⍝ compute generation 3
63.197

 ⎕←g4←NextGen B Neq g3 ⍝ compute generation 4
88.781

 ⎕←g5←NextGen B Neq g4 ⍝ compute generation 5
99.737

 ⎕←g6←NextGen B Neq g5 ⍝ compute generation 6
100.03

Page 13 of 20

 ⎕←g7←NextGen B Neq g6 ⍝ compute generation 7
99.997

 ⎕←g8←NextGen B Neq g7 ⍝ compute generation 8
100

 ⎕←g9←NextGen B Neq g8 ⍝ compute generation 9
100
Beginning with the 8th generation, this population hits its equilibrium population density and will stay there.

The second APL function is named GenX and must have the same right argument as NextGen, but will also take

an integer left argument representing the generation number whose population density is returned. Note: Non-

looping solutions will be given greater consideration by the judges.

Example:

 ⎕←6 GenX B Neq N ⍝ compute generation 6
100.03

Page 14 of 20

Problem 2 (medium difficulty) – Some days you're the predator, others you're the prey…

Species can interact directly with one another by predation (meaning that one species eats another). The

population model described in the previous problem can be modified to take into account the effect of a

predatory species as follows:

 (())

Where:

 = population density of predators in generation t

 = a constant measuring the efficiency of the predator

all other terms are as described in the previous problem

The slope of the prey reproductive curve, , can be computed using:

Where:

 = maximum reproductive rate of the prey

 = equilibrium population density of the prey

If the predator reproductive rate is dependent on the number of prey available, then the predator population can

be modeled as follows:

Where:

 = population density of the predator species

 = population density of the prey species

t = generation number

 = a constant measuring the efficiency of the utilization of prey for reproduction by predators

The constant can be computed as:

Where:

 = maximum reproductive rate of the predator

 = equilibrium population density of the prey

Page 15 of 20

There are four possible outcomes from these equations:

Stable equilibrium without oscillation - the
population remains stable and does not oscillate

Stable oscillation – similar to a sine wave, the population
oscillates

Convergent (damping) oscillation – the population
oscillates and converges

Divergent (growing) oscillation leading to the extinction of
one or both species - the population oscillates but
diverges

Page 16 of 20

Write 2 APL functions. The first function, PredPrey, will simulate a predator-prey model based on your inputs.

The left argument is the number of generations to run. The right argument is a 6-element vector comprising the

prey equilibrium population, the prey observed population, the prey reproductive rate, the predator observed

population, the predator reproductive rate and the predator efficiency, C, from above. The result of PredPrey is

a 2 row numeric matrix where the prey population for each generation is in the first row and the predator

population for each generation is in the second row.

Example:

 gen←6 ⍝ number of generations to run
 Neq←100 ⍝ prey population equilibrium density
 N←50 ⍝ observed prey population density
 P←.2 ⍝ observed predator population density
 R←1.5 ⍝ prey reproductive rate
 S←2 ⍝ predator reproductive rate
 C←.5 ⍝ predator "efficiency" rate

 ⎕←model←0 2∘⍕¨gen PredPrey Neq N R P S C ⍝ format to 2 decimal places
 50.00 57.50 63.97 68.14 68.97 65.84
 0.20 0.20 0.23 0.29 0.40 0.55

 'Generation' 'Prey' 'Predator'⍪(⍳gen),⍉model ⍝ make an ad hoc report
 Generation Prey Predator
 1 50.00 0.20
 2 57.50 0.20
 3 63.97 0.23
 4 68.14 0.29
 5 68.97 0.40
 6 65.84 0.55

The second function, OutcomeType, takes the output from PredPrey and returns a character vector indicating

which of the four possible outcomes the model represents.

OutcomeType will return one of 'equilibrium' 'oscillation' 'convergent' or 'divergent' as

appropriate.

Example:

 OutcomeType 100 PredPrey Neq N R P S C
convergent

Page 17 of 20

The template workspace and script files contain a function, #.Chart, which you can use to produce simple

character-based charts of time series data. The right argument to #.Chart is a numeric vector representing a

single time series or a matrix where each row represents a time series. The optional left argument to #.Chart is

an integer scalar indicating the height of the chart. The template workspace also contains a function, #.Graph,

which uses the RainPro graphics package supplied with Dyalog APL to produce higher resolution graphs. #.Graph

takes a right argument like the one used by #.Chart. If you are using the Linux version of Dyalog APL, you must

supply a left argument which is a character vector of the name of the image file to write. If you are using the

Windows version of Dyalog APL, omitting the left argument will cause #.Graph to display a window containing

the graph produced.

 model←50 PredPrey Neq N R P S C ⍝ run 50 generations
 #.Graph model

 11 #.Chart model ⍝ produce an 11 row character-based chart
 68.97- ** ○○ * ○ -0.86
 | * * * ○ ** ○○ ** ○○ |
 | * ○ * ○ * *○ * *○ |
 | * ○ * ○ ○ |
 | * * * * * * ○ |
 | ○ ○ ○ ○ |
 52.00-* * ○ * * ○ * ○ * -1.00
 | ○ ○ * ○ * ○|
 | ○ * ○* ○* |
 | ○ * ○ ○ * ○ * ○ * |
 | ○ *○ ○ * *○○○○ ***○○○○ **|
 34.67-○○ ** ○○ * -0.20

Page 18 of 20

Problem 3 (high difficulty) – Bunnies and Foxes

In Problem 2, you developed PredPrey to model the interaction of predator and prey species. In Problem 3 you

will use PredPrey to model an island that is populated with bunnies (prey) and foxes (predators) as follows.

The island is represented by an M×M array of cells and is populated with starting populations of bunnies and

foxes. More than one of a species can occupy a cell, as can more than one species. For instance, a cell could have

5 bunnies and 2 foxes.

For each "generation" of the island:

 Calculate the next generation populations

o For each cell containing predator or prey, use the 7×7 cell block surrounding the current cell to

compute the observed population density.

For example, consider the population density calculations using 3×3 cell blocks in the following

16-cell island; the numbers represent the count of individuals in each cell.

4 3 4 0

2 2 3 3

0 5 4 2

3 0 2 1

The population density is calculated by totaling the population in a 3×3 block and then dividing by

the number of cells in the block. Cells that don't have a complete surrounding block should use

the number of surrounding cells available. This is demonstrated below showing the population

densities for the yellow-highlighted cells.

4 3 4 0

2 2 3 3

0 5 4 2

3 0 2 1

 ⎕←N←(+/4 3 4 2 2 3 0 5 4)÷9
3

4 3 4 0

2 2 3 3

0 5 4 2

3 0 2 1

 ⎕←N←(+/2 2 0 5 3 0)÷6
2

4 3 4 0

2 2 3 3

0 5 4 2

3 0 2 1

 ⎕←N←(+/4 2 2 1)÷4
2.25

o use PredPrey to project the population density of the next generation

 Apply the next generation projection and, based on the projected density, compute the probability that

each individual in the cell procreates or dies.

o When the projected population is greater than the observed population, use the increase to

determine the probability that an individual procreates.

 For example, if the observed and projected populations are 40 and 50 respectively, then

there is a 25% ((50-40)÷40) chance of that individual procreating.

o If the probability exceeds 100%, limit the increase to a litter size of 4 for bunnies and 2 for foxes.

 For example, if the observed and projected bunny populations are 2 and 20 respectively,

then the chance of that individual procreating is 900% ((20-2)÷2). Limit the increase to the

litter size of 4.

 If the percent is fractional and smaller than the litter limit, then use the fractional part to

determine the probability for the last individual. For example, if the observed and

Page 19 of 20

projected populations are 2 and 7 respectively (250% = (7-2)÷2), then increase the

population by 2 and use a 50% probability to determine if there is an additional individual

born.

o When the projected population is less than the observed population, use the decrease to

determine the probability that an individual dies.

 For example, if the projected and observed populations are 2 and 4 respectively, then

there is a 50% chance that the individual will die.

 Randomly migrate the populations

o Each individual of each species may (or may not) move up to one cell in any direction. Individuals

cannot fall off the edge of the island, so individuals in cells located at the edges of the island have

fewer choices of where to move.

Repeat the above for the specified number of generations or until one or both species perish, whichever

comes first.

The data structure to represent the island will be a 3-dimensional array of shape 2×M×M. The first plane will

contain the bunny population and the second plane the fox population.

Page 20 of 20

Write a function called BunnyFox that takes as its left argument an array representing the initial state of the

island and as its right argument a 5-element vector comprising the number of generations to run, the prey

equilibrium population density, the prey reproductive rate, the predator reproductive rate and the predator

efficiency. BunnyFox must return as its result the state of the island as a 2×M×M integer matrix. The contest

template workspace and script files have 3 variables, Island10, Island50, and Island100, containing

representations of 10×10, 50×50 and 100×100 islands.

 gen←100 ⍝ number of generations to run
 Neq←100 ⍝ prey population equilibrium
 R←1.5 ⍝ prey reproductive rate
 S←2 ⍝ predator reproductive rate
 C←.5 ⍝ predator "efficiency" rate

 ⎕←island←Island10 BunnyFox gen Neq R S C
3 3 3 2 1 4 1 3 1 0
0 2 3 1 0 0 0 3 1 0
2 2 2 2 0 1 4 3 2 3
1 0 4 2 0 4 0 1 2 2
3 3 2 0 0 4 0 1 3 3
0 2 4 1 4 4 1 1 2 4
4 1 3 3 2 1 3 0 1 0
2 0 0 2 2 0 3 1 4 0
4 0 0 2 3 4 1 1 3 2
3 3 3 3 0 1 1 2 3 3

1 0 0 1 0 2 0 0 1 0
2 1 1 2 0 1 2 1 0 1
1 2 0 1 2 1 0 1 2 0
0 1 2 2 0 0 0 1 0 1
0 2 1 1 0 2 1 2 2 2
2 1 2 1 1 1 1 1 0 0
1 1 0 0 0 2 1 2 2 0
2 0 1 0 1 0 2 1 0 0
1 1 0 2 0 2 2 0 1 0
1 0 1 2 2 2 0 2 1 0

N.B. the above result is for purposes of example only, you should test your solution with larger island sizes.

