

APL Problem Solving Competition

Phase I
The following shows what a typical Phase I problem description looks like. It also
presents some possible solutions of varying quality, and explains how to provide
your own solution. Content that doesn't appear in regular Phase I problems is
formatted like this paragraph.

Each problem begins with a task description, followed by a hint suggesting one or
more APL primitives. These may be helpful in solving the problem, but you are
under no obligation to use them. Clicking on a primitive in the hint will open the
Dyalog documentation page for the suggested primitive.

After the hint is a section of example cases which, among others, are included in the
automated tests. Use these as a basis for implementing your solution.

Sample: Counting Vowels
Write an APL function to count the number of vowels (A, E, I, O, U) in an array
consisting of uppercase letters (A–Z).

 Hint: The membership function X∊Y could be helpful for this problem.

Examples
 (fn) 'COOLAPL'
3
 (fn) '' ⍝ empty argument
0
 (fn) 'NVWLSHR' ⍝ no vowels here
0

Below are three sample solutions. All three produce the correct answer, but the first
two functions would be ranked higher by the competition judging committee. This
is because the first two demonstrate better use of array-oriented programming.
 ({+/⍵∊'AEIOU'}) 'COOLAPL' ⍝ good dfn
3
 (+/∊∘'AEIOU') 'COOLAPL' ⍝ good tacit function
3
 ⍝ suboptimal dfn:
 {(+/⍵='A')+(+/⍵='E')+(+/⍵='I')+(+/⍵='O')+(+/⍵='U')} 'COOLAPL'
3

http://help.dyalog.com/latest/#Language/Primitive%20Functions/Membership.htm

2020 Phase I Problem Set

1: Let's Split!
Write a function that, given a right argument Y which is a scalar or a non-empty
vector and a left argument X which is a single non-zero integer so that its absolute
value is less or equal to ≢Y, splits Y into a vector of two vectors according to X, as
follows:

If X>0, the first vector contains the first X elements of Y and the second vector
contains the remaining elements.

If X<0, the second vector contains the last |X elements of Y and the first vector
contains the remaining elements.

 Hint: The Take function X↑Y might be useful for this problem.

Examples
 9 (fn) 'SplittingHairs' ⍝ using]Boxing on
┌─────────┬─────┐
│Splitting│Hairs│
└─────────┴─────┘

 ¯3 (fn) 'DyalogAPL'
┌──────┬───┐
│Dyalog│APL│
└──────┴───┘

 10 (fn) ⍳10
┌────────────────────┬┐
│1 2 3 4 5 6 7 8 9 10││
└────────────────────┴┘

 1 (fn) 'works' 'with' 'words' 'also'
┌───────┬─────────────────┐
│┌─────┐│┌────┬─────┬────┐│
││works│││with│words│also││
│└─────┘│└────┴─────┴────┘│
└───────┴─────────────────┘

http://help.dyalog.com/latest/#Language/Primitive%20Functions/Take.htm

2: Character Building
UTF-8 encodes Unicode characters using 1-4 integers for each character. Dyalog
APL includes a system function, ⎕UCS, that can convert characters into integers and
integers into characters. The expression 'UTF-8'∘⎕UCS converts between characters
and UTF-8.

Consider the following:
 'UTF-8'∘⎕UCS 'D¥⍺⌊○9'
68 194 165 226 141 186 226 140 138 226 151 139 57
 'UTF-8'∘⎕UCS 68 194 165 226 141 186 226 140 138 226 151 139 57
D¥⍺⌊○9

How many integers does each character use?
 'UTF-8'∘⎕UCS¨ 'D¥⍺⌊○9' ⍝ using]Boxing on
┌──┬───────┬───────────┬───────────┬───────────┬──┐
│68│194 165│226 141 186│226 140 138│226 151 139│57│
└──┴───────┴───────────┴───────────┴───────────┴──┘

The rule is that an integer in the range 128 to 191 (inclusive) continues the
character of the previous integer (which may itself be a continuation). With that in
mind, write a function that, given a right argument which is a simple integer vector
representing valid UTF-8 text, encloses each sequence of integers that represent a
single character, like the result of 'UTF-8'∘⎕UCS¨'UTF-8'∘⎕UCS but does not use
any system functions (names beginning with ⎕)

 Hint: Use ⎕UCS to verify your solution.

Examples
 (fn) 68 194 165 226 141 186 226 140 138 240 159 148 178 57 ⍝
using]Boxing on
┌──┬───────┬───────────┬───────────┬───────────────┬──┐
│68│194 165│226 141 186│226 140 138│240 159 148 178│57│
└──┴───────┴───────────┴───────────┴───────────────┴──┘

 (fn) 68 121 97 108 111 103 ⍝ 'Dyalog'
┌──┬───┬──┬───┬───┬───┐
│68│121│97│108│111│103│
└──┴───┴──┴───┴───┴───┘

 (fn) ⍬ ⍝ '' (any empty vector result is acceptable here)

https://help.dyalog.com/latest/#Language/System%20Functions/ucs.htm

3: Excel-lent Columns
A Microsoft Excel spreadsheet numbers its rows counting up from 1. However
Excel's columns are labelled alphabetically — beginning with A–Z, then AA–AZ, BA–
BZ, up to ZA–ZZ, then AAA–AAZ and so on.

Write a function that, given a right argument which is a character scalar or non-
empty vector representing a valid character Excel column identifier between A and
XFD, returns the corresponding column number

 Hint: The Decode function X⊥Y.

Examples
 (fn) 'A'
1

 (fn) 'APL'
1104

https://help.dyalog.com/latest/#Language/Primitive%20Functions/Decode.htm

4: Take a Leap
Write a function that, given a right argument which is an integer array of year
numbers greater than or equal to 1752 and less than 4000, returns a result of the
same shape as the right argument where 1 indicates that the corresponding year is
a leap year (0 otherwise).

A leap year algorithm can be found here.

 Hint: The Residue function X|Y and the Outer Product operator ∘. could be
useful for this problem.

Examples
 (fn) 2020
1

 (fn) ⍬ ⍝ returns an empty vector

 (fn) 1900+10 10⍴⍳100
0 0 0 1 0 0 0 1 0 0
0 1 0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 1 0 0
0 1 0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 1 0 0
0 1 0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 1 0 0
0 1 0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 1 0 0
0 1 0 0 0 1 0 0 0 1

https://en.wikipedia.org/wiki/Leap_year#Algorithm
https://help.dyalog.com/latest/#Language/Primitive%20Functions/Residue.htm
https://help.dyalog.com/latest/#Language/Primitive%20Operators/Outer%20Product.htm

5: Stepping in the Proper Direction
Write a function that, given a right argument of 2 integers, returns a vector of the
integers from the first element of the right argument to the second, inclusively.

 Hint: The Index Generator function ⍳Y function could be useful when solving
this problem.

Examples
 (fn) 3 10
3 4 5 6 7 8 9 10

 (fn) 4 ¯3
4 3 2 1 0 ¯1 ¯2 ¯3

 ⎕←r←(fn) 42 42
42

 ⍴r ⍝ this is also a vector
1

6: Please Move to the Front
Write a function that, given a right argument which is an integer vector and a left
argument which is an integer scalar, reorders the right argument so any elements
equal to the left argument come first while all other elements keep their order.

 Hint: The Grade Up function ⍋Y could be helpful for this problem.

Examples
 3 (fn) 1 2 3 4 1 3 1 4 5
3 3 1 2 4 1 1 4 5

 3 (fn) ,1 ⍝ the , makes 1 into a vector
1

 42 (fn) ⍬ ⍝ empty right argument gives empty result

https://help.dyalog.com/latest/index.htm/#Language/Primitive%20Functions/Index%20Generator.htm
https://help.dyalog.com/latest/#Language/Primitive%20Functions/Grade%20Up%20Monadic.htm

7: See You in a Bit
A common technique for encoding a set of on/off states is to use a value of 2 for
the state in position n (origin 0), 1 if the state is "on" or 0 for "off" and then add the
values. Dyalog APL's component file permission codes are an example of this. For
example, if you wanted to grant permissions for read (access code 1), append
(access code 8) and rename (access code 128) then the resulting code would be 137
because that's 1 + 8 + 128.

Write a function that, given a non-negative right argument which is an integer
scalar representing the encoded state and a left argument which is an integer scalar
representing the encoded state settings that you want to query, returns 1 if all of
the codes in the left argument are found in the right argument (0 otherwise).

 Hint: The Decode function X⊥Y and the derived Inverse operator ⍣¯1 could be
helpful for decoding the states.

Examples
 2 (fn) 7 ⍝ is 2 in 7 (1+2+4)?
1

 4 (fn) 11 ⍝ is 4 in 11 (1+2+8)?
0

 3 (fn) 11 ⍝ is 3 (1+2) in 11 (1+2+8)?
1

 4 (fn) 0 ⍝ is 4 in 0?
0

n

https://help.dyalog.com/17.1/#Language/APL%20Component%20Files/Component%20Files.htm#File_Access_Control
https://help.dyalog.com/latest/#Language/Primitive%20Functions/Decode.htm
https://help.dyalog.com/latest/#Language/Primitive%20Operators/Power%20Operator.htm

8: Zigzag Numbers
A zigzag number is an integer in which the difference in magnitude of each pair of
consecutive digits alternates from positive to negative or negative to positive.

Write a function that takes a single integer greater than or equal to 100 and less
than 10 as its right argument and returns a 1 if the integer is a zigzag number, 0
otherwise.

 Hint: Your solution might make use of N-wise Reduction X f/ Y.

Examples
 (fn) 123
0

 (fn) 132
1

 (fn) 31115
0

 (fn) 3141514131415
1

15

https://help.dyalog.com/latest/#Language/Primitive%20Operators/Reduce%20N%20Wise.htm#ReduceN-Wise

9: Rise and Fall
Write a function that, given a right argument which is an integer scalar or vector,
returns a 1 if the values of the right argument conform to the following pattern (0
otherwise):

The elements increase or stay the same until the "apex" (highest value) is
reached
After the apex, any remaining values decrease or remain the same

 Hint: The Maximum function X⌈Y combined with the Reduce operator f/Y and
the Reverse function ⌽Y can help with solving this problem.

Examples
 (fn) 1 3 3 4 5 2 1
1

 (fn) 42
1

 (fn) 1 3 2 4
0

 (fn) 23 23 23
1

 (fn) ⍬ ⍝ empty vector
1

https://help.dyalog.com/latest/#Language/Primitive%20Functions/Maximum.htm
https://help.dyalog.com/latest/#Language/Primitive%20Operators/Reduce.htm
https://help.dyalog.com/latest/#Language/Primitive%20Functions/Reverse.htm

10: Stacking It Up
Write a function that takes as its right argument a vector of simple arrays of rank 2
or less (scalar, vector, or matrix). Each simple array will consist of either non-
negative integers or printable ASCII characters. The function must return a simple
character array that displays identically to what {⎕←⍵}¨ displays when applied to the
right argument.

 Hint: The Mix ↑Y, Split ↓Y, and Format ⍕Y functions could be helpful for solving
this problem.

Examples
All results will look identical with]Boxing on as they are simple (non-nested)
character arrays.
 (fn) 'Hi' 'Earth'
Hi
Earth

 (fn) (3 3⍴⍳9)(↑'Adam' 'Michael')(⍳10) '*'(5 5⍴⍳25)
1 2 3
4 5 6
7 8 9
Adam
Michael
1 2 3 4 5 6 7 8 9 10
*
 1 2 3 4 5
 6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

 (fn) 'O' 'my!'
O
my!

 (fn) ,⊂⍳4
1 2 3 4

 (fn) ,'A'
A

https://help.dyalog.com/latest/#Language/Primitive%20Functions/Mix.htm
https://help.dyalog.com/latest/#Language/Primitive%20Functions/Split.htm
https://help.dyalog.com/latest/#Language/Primitive%20Functions/Format%20Monadic.htm

