
2020 APL Problem Solving Competition – Phase II Problem Descriptions

Errata
This section will contain descriptions of any corrections that are made to this document after its initial release.
When such corrections are made, newer versions of this document and the Contest2020.zip file will be uploaded
to the contest website. If you have registered for the competition, then we will notify you by email when updated
Phase II materials are made available.

11 May 2020
The following amendments were made:

• Problem 6 – Merge had a discrepancy in the examples regarding the use of "lastname" and "surname".
The merge1.json and merge2.json files in the Data folder of the Contest2020.zip file incorrectly had
"surname" instead of "lastname". These files have been corrected and the example amended from:

 ⊢merge1←⊃⎕NGET '/Data/merge1.json'
{
 "firstname":"Drake",
 "surname":"Mallard",
 "prize":"yoyo",
 "value":100
}
 ns←⎕JSON merge1 ⍝ convert JSON to namespace
 ns.⎕NL ¯2 ⍝ variables in the namespace
┌─────────┬─────┬───────┬─────┐
│firstname│prize│surname│value│
└─────────┴─────┴───────┴─────┘

to:
 ⊢merge1←⊃⎕NGET '/Data/merge1.json'
{
 "firstname":"Drake",
 "lastname":"Mallard",
 "prize":"yoyo",
 "value":100
}
 ns←⎕JSON merge1 ⍝ convert JSON to namespace
 ns.⎕NL ¯2 ⍝ variables in the namespace
┌─────────┬─────┬────────┬─────┐
│firstname│prize│lastname│value│
└─────────┴─────┴────────┴─────┘

26 May 2020
The following amendments were made:

• Problem 8 – The first two examples incorrectly had the function name as Parts. The examples have
been amended from:
 Parts 1 2 3 4 5 ⍝ odd total? Can't split evenly, so return ⍬

 Parts 1 3 ⍝ can't split evenly, so return ⍬
to:

 Balance 1 2 3 4 5 ⍝ odd total? Can't split evenly, so return ⍬

 Balance 1 3 ⍝ can't split evenly, so return ⍬

Welcome!

This year's Phase II problems cover multiple domains, including bioinformatics, finance, information retrieval,
algorithm development, text processing, and recreational computing. Each problem has been assigned a difficulty
level – low, medium or hard – based on the judges' impressions.

Unlike previous years, you are not required to complete any specific problems. You must solve at least 1 (one)
problem to be considered for a prize; if a problem has more than one task, then you need to solve all its tasks for
the problem to be considered solved. We encourage you to solve as many problems as possible. The judging
committee takes the following criteria into consideration:

• Did you solve the problem? Working solutions rate higher than non-working ones. ����
• The difficulty of the problem. If two entrants solve two different problems equally well, the entrant who

solves the more difficult problem will likely receive higher consideration.
• Does your solution demonstrate an understanding of the problem, including the implications imposed by

edge cases? Is it well commented, but without writing a novel? Does the code flow smoothly?
• The appropriate application of array-oriented thinking. One of APL's strengths is its ability to process

entire arrays at once rather than having you write code to loop over each element. However, not every
problem has an elegant array-oriented solution. We look for your ability to discern where an array-
oriented approach is beneficial.

• Brevity is not a primary consideration. This is not a code-golfing contest.
• Performance is a consideration. If two solutions are comparable in every other aspect, the faster one will

likely receive higher consideration.
• Again, we encourage you to solve as many problems as possible. If two entries are comparable in every

other aspect, the one that solves more problems will likely receive higher consideration.
 Good Luck and Happy Problem Solving!

Note
Some of the examples are displayed using the user command setting]Boxing on to more clearly depict the
structure of the displayed data. For example:
 ('Dyalog' 'APL')(4 4⍴⍳16) 5
 Dyalog APL 1 2 3 4 5
 5 6 7 8
 9 10 11 12
 13 14 15 16

]Boxing on
Was OFF
 ('Dyalog' 'APL')(4 4⍴⍳16) 5
┌────────────┬───────────┬─┐
│┌──────┬───┐│ 1 2 3 4│5│
││Dyalog│APL││ 5 6 7 8│ │
│└──────┴───┘│ 9 10 11 12│ │
│ │13 14 15 16│ │
└────────────┴───────────┴─┘

How to Participate in Phase II

You'll need to download the file named Contest2020.zip from the competition website
https://dyalogaplcompetition.com. This file contains several files including:

• This document (which is also downloadable separately).
• Contest2020.dws – the contest workspace to use if you want to use Dyalog APL's development

environment.
• Contest2020.dyalog – a template namespace script that contains syntactically-correct stub functions for

all Phase II problems. This allows you to use your preferred editor to build your solutions. If you happen to
like Visual Studio Code, there are extensions from Optima Systems Ltd. to help with editing, syntax
coloring, etc. (Search the Visual Studio Code Extensions Marketplace for "OptimaSystems".)

• Any data files necessary to solve the problems.

Develop your solutions using either the workspace (if using Dyalog's development environment) or the template
(if using an external editor).
Your solutions should consist of only functions or operators and not depend on any global variables. You may
write other functions to organize your code as you deem necessary.

Using the Contest2020.dws workspace

The Contest2020.dws workspace requires Dyalog APL v17.0 or later. If you use an earlier version of Dyalog APL,
you should use the Contest2020.dyalog template file described below. The workspace contains:

• #.Problems – a namespace in which you will develop your solutions. #.Problems contains:
o syntactically correct stubs for all of the functions described in the problem descriptions. These

function stubs are implemented as traditional APL functions (tradfns) but you can change the
implementation to dfns if you prefer; either form is acceptable.

o any sample data elements mentioned in the problem descriptions.
Any sub-functions you develop as a part of your solution should be located in #.Problems

• #.SubmitMe – a function used to package your solution for submission. On Microsoft Windows this
function will display a GUI form to allow you to enter a description of yourself and any feedback on the
competition. On non-Windows platforms, you'll be presented with a character-based prompt and
response interaction.

Important! Make sure you save your work using the)SAVE system command!

Once you are ready to submit your solutions, run the #.SubmitMe function, enter the requested information and
click the Save button. #.SubmitMe will create a file called Contest2020.dyalog which will contain any code or
data you placed in the #.Problems namespace. You will then upload the Contest2020.dyalog file using the
contest website.

https://dyalogaplcompetition.com/

Using the Contest2020.dyalog template file

This file contains the correct structure for submission. You can populate it with your code, but do not change the
namespace structure. Once you have developed your solution, edit the AboutMe and Reaction variable
definitions at the top of the file and upload the file using the contest website.

If you use a non-Dyalog APL system to develop your solutions, they will nonetheless need to execute under Dyalog
APL. Therefore your solution should only use APL features that are common between your APL system and Dyalog
APL.

If use Dyalog APL, including versions prior to v17.0, you can load the Contest2020.dyalog file into your session
using the]load user command. For instance, assuming you've unzipped the zip file into a folder named
/contest/, you would use
]load /contest/Contest2020

Use of tacit or derived functions in Phase II

If you use the Contest2020.dws workspace and you want to use tacit or derived functions in your Phase II
solutions, they need to either:

1. be defined inline within a tradfn or dfn. For example:
 ∇ r←Foo w;Avg
[1] Avg←+/÷≢
[2] ...
 ∇
or
Goo←{
 Avg←+⌿÷≢
 ...
}

2. be "wrapped" in a tradfn. For example:
 ∇ Avg←Avg
[1] Avg←+⌿÷≢
 ∇

If you use the Contest2020.dyalog template file, you may enter tacit or derived functions directly in the file.

Problem 1 – Take a Dive (1 task)
Level of Difficulty: Low

In an international competition like the Olympics, a diver's scores are determined by their
execution of the dive and the degree of difficulty of the dive. The degree of difficulty for a particular dive is a
number greater than 1 and is calculated on the basis of the dive's body position, the number of somersaults
and/or twists, and other factors. Currently the most difficult dive, a reverse 4.5 somersault in pike position, has a
4.8 degree of difficulty.

Scores are calculated as follows:

1. Each judge rates the execution of the dive from 0 ("completely failed") to 10 ("excellent")
2. Outliers are removed depending on how many judges are used:

o For seven judges, the lowest two and highest two scores are discarded
o For five judges, the lowest and highest scores are discarded
o For three judges, all scores are used

3. The remaining scores are totaled.
4. The total is multiplied by the degree of difficulty.

Task 1: Write a function named DiveScore that has the following syntax:
 score ← dd DiveScore scores
where:

• the left argument dd is a single number representing the degree of difficulty.
• the right argument scores is a numeric vector of length 3, 5, or 7 representing the judges' scores. Your

code does not need to check that the length of scores is 3, 5, or 7; you may assume the argument will
always be a correct length.

• the result score is the score computed using the steps above rounded to at most 2 decimal places.

Examples:
 2.8 DiveScore 7 7.5 6.5 8 8 7.5 7
61.6

 2.9 2.6 2.7 DiveScore¨(7 7.5 6.5 8 8 7.5 7)(9.5 8 8.5)(7.5 7 7 8.5 8)
63.8 67.6 60.75

Problem 2 – Another Step in the Proper Direction (1 task)
Level of Difficulty: Medium

In Problem 5 of Phase 1, "Stepping in the Proper Direction", you were asked to write an
expression that, given a right argument of 2 integers, returns a vector of the integers from the
first element of the right argument to the second, inclusively. This problem enhances that functionality.

Task 1: Write a function named Steps which has the following syntax:
 steps ← {p} Steps fromTo
where:

• the right argument fromTo is a 2-element integer vector representing the start and end points of the
result.

• the optional left argument p is a single number as follows:
o If p is negative, its absolute value represents the number of equally sized steps to take.

 If p is not an integer, treat it like ⌊p. (e.g. ¯4.7 is treated as ¯5)
o If p is positive, it represents the step size.

 If p does not evenly divide fromTo, the last step will be <p.
o If p is 0, return the first element of fromTo (as if you took zero steps)
o If p is not provided, Steps should behave exactly as Problem 5 of Phase 1.

See default left argument if you're using a dfn or defined functions if you're using a tradfn.
• the result, steps, is a numeric vector such that fromTo≡(⊣/,⊢/)steps and whose interior elements, if

any, represent intermediate points.

Examples:
 Steps 4 ¯3 ⍝ same as Phase 1 Problem 5
4 3 2 1 0 ¯1 ¯2 ¯3

 1 Steps 4 ¯3 ⍝ step size of 1
4 3 2 1 0 ¯1 ¯2 ¯3

 1.5 Steps ¯3 4 ⍝ step size of 1.5 (note last step is size 1)
¯3 ¯1.5 0 1.5 3 4

 1.5 Steps 4 ¯3 ⍝ step size of 1.5 (note last step is size 1)
4 2.5 1 ¯0.5 ¯2 ¯3

 ¯4 Steps 42 42 ⍝ 4 zero-sized steps
42 42 42 42 42

 4⍕¯7 Steps 3 6 ⍝ result formatted to 4 decimal places by using 4⍕
 3.0000 3.4286 3.8571 4.2857 4.7143 5.1429 5.5714 6.0000

http://help.dyalog.com/latest/#Language/Defined%20Functions%20and%20Operators/DynamicFunctions/Default%20Left%20Argument.htm
http://help.dyalog.com/latest/#Language/Introduction/Functions.htm

Problem 3 – Past Tasks Blast (1 task)
Level of Difficulty: Medium

We're going to do a little web scraping in this problem. Dyalog Ltd has made links to PDF files containing problem
sets from past competitions available on https://www.dyalog.com/student-competition.htm.

Task 1: Write a function named PastTasks which has the following syntax:
 urls ← PastTasks url
where:

• the right argument, url, is the character vector 'https://www.dyalog.com/student-
competition.htm'.

• the result, urls, is a vector of character vectors each representing a fully qualified URL for a PDF file
linked on the web page. The order of the URLs is not significant.

Notes:
• We can recommend a couple of ways to retrieve the content of the web page.

o Use the Dyalog utility HttpCommand. You should load HttpCommand manually outside of your
function (i.e. your function does not need to load HttpCommand).
HttpCommand.Documentation will return documentation for HttpCommand.
]load HttpCommand

Then in your function, call HttpCommand.
r←HttpCommand.Get 'https://www.dyalog.com/student-competition.htm'

HttpCommand returns a namespace. The payload of the response is found in the Data element
pageContent←r.Data

o Use ⎕SH and the curl command (if it's available on your operating system)
pageContent←∊⎕SH 'curl https://www.dyalog.com/student-competition.htm'

• There are several ways to parse the page content. A few of them are:
o Use ⎕XML to convert the HTML to matrix form (the page is XHTML-compliant and therefore

parseable by ⎕XML).
o Use regular expressions with with the regex search system function ⎕S.
o Use APL's search primitive functions
o Some combination of the above

• The links to the PDF files are found in the href attribute of <a> (anchor) elements. These links are
relative to the base address for the page, which is found in the href attribute of the <base> element.

Example: your function should return all the URLs listed below, though not necessarily in the same order

 ≢urls ← PastTasks 'https://www.dyalog.com/student-competition.htm'
18
 ↑8↑urls ⍝ the first 8 URLs
https://www.dyalog.com/uploads/files/student_competition/2019_problems_phase1.pdf
https://www.dyalog.com/uploads/files/student_competition/2019_problems_phase2.pdf
https://www.dyalog.com/uploads/files/student_competition/2018_problems_phase1.pdf
https://www.dyalog.com/uploads/files/student_competition/2018_problems_phase2.pdf
https://www.dyalog.com/uploads/files/student_competition/2017_problems_phase1.pdf
https://www.dyalog.com/uploads/files/student_competition/2017_problems_phase2.pdf
https://www.dyalog.com/uploads/files/student_competition/2016_problems_phase1.pdf
https://www.dyalog.com/uploads/files/student_competition/2016_problems_phase2.pdf

https://www.dyalog.com/student-competition.htm
https://www.dyalog.com/student-competition.htm

Problem 4 – Bioinformatics (2 tasks)
Level of Difficulty: Medium

For many years we have used problems from Rosalind inour competition. Rosalind is an
excellent bioinformatics learning platform. This year we've selected two problems for you to
solve.

Task 1: Write a function named revp which solves the Location Restriction Sites problem found at
http://rosalind.info/problems/revp/. revp finds all the reverse palindromes of length between 4 and 12 in the
input DNA string.

Note: What's a reverse palindrome in genetics?
The complement of a DNA string swaps 'A' for 'T', 'T' for 'A', 'C' for 'G', and 'G' for 'C'. 'ACTG' is the
complement of 'TGAC'. 'GTCA' is the reverse complement of 'TGAC'. A reverse palindrome is a section of
DNA that matches the reverse of its complement.

revp has the following syntax:
 r ← revp dna
where:

• the argument dna is a character vector representing a DNA string.
• the result, r, is a 2-column numeric matrix of the [;1] positions [;2] lengths of the reverse palindromes.

Notes:
• Two sets of sample dataset and output files are found in the /Data/ folder of the contest zip file.

rosalind_revp_1_dataset.txt / rosalind_revp_1_output.txt
rosalind_revp_2_dataset.txt / rosalind_revp_2_output.txt

• To read a dataset from the file, you can use the following (replacing filename with the name of the
actual file):
 dataset←∊1↓⊃⎕NGET 'filename' 1

• As noted on the problem webpage, the result can be in any order.
• You can check your solution by submitting it on Rosalind.

Examples:
 revp 'TCAATGCATGCGGGTCTATATGCAT'
 5 4
 7 4
17 4
18 4
21 4
 4 6
 6 6
20 6

 ≢revp ∊1↓⊃⎕NGET 'rosalind_revp_1_dataset.txt' 1
92

 ≢revp ∊1↓⊃⎕NGET 'rosalind_revp_2_dataset.txt' 1
89

http://rosalind.info/
http://rosalind.info/problems/revp/

Task 2: Write a function named sset which solves the Counting Subsets problem found at
http://rosalind.info/problems/sset/. sset has the following syntax:
 r ← sset n
where:

• the argument, n, is a positive integer ≤1000.
• the result, r, is an integer of the total number of subsets that can be made from a set of n elements

modulo 1,000,000.
Notes:

• Dyalog APL does not have unlimited length integers, so the main trick to this task is understanding
modular multiplication.

• You can also check your solution by submitting it on Rosalind.

Examples:
 sset 3
8

 sset 857
551872

 sset 870
935424

http://rosalind.info/problems/sset/
https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/modular-multiplication

Problem 5 – Future and Present Value (2 tasks)
Level of Difficulty: Medium

Future value is the value of a current asset at a future date based on an assumed rate of
return. If the rate of return is constant, the future value can be calculated as:

𝑰𝑰 × (𝟏𝟏 + 𝑹𝑹)𝑻𝑻
In APL: I×(1+R)*T

where:
• I is the current value
• R is the rate of return
• T is the number of terms, generally years, into the future

If the rate of return is not constant then you need to successively multiply by each future rate.
 investment←100
 rates←.03 .04 ⍝ rates of 3% then 4%
 ×/investment,1+rates
107.12

If you want to track the value of your investments over time, you can use the scan operator \.
 fv←{⍺××\1+⍵}
 rates←0 .03 .04 .06 .02 .02 .04 ⍝ the leading 0 is to show the initial amount
 2⍕100 fv rates ⍝ 2⍕ formats to 2 decimal places
100.00 103.00 107.12 113.55 115.82 118.13 122.86

Over time, you may want to invest or withdraw funds. For example:
 amounts←100 0 20 0 ¯10 0 0
Positive amounts are investments and negative amounts are withdrawals.

To calculate each period, you use can use a recurrence relation:
 r[n]←amounts[n]+r[n-1]×1+rates[n] ⍝ for n=2 through ≢amounts, r[1]←amounts[1]
This recurrence relation is easy to write as loop.

Task 1: Write a function named rr which has the following syntax:
 r ← amounts rr rates
where:

• the right argument, rates, is a numeric vector of interest rates where the first value is 0.
• the left argument, amounts, is numeric vector of deposit and withdrawal amounts, the first value is the

initial deposit.
• the result, r, is a numeric vector of the cumulative values.

Notes:

• Although rr can be implemented using a looping solution, non-looping solutions will be given higher
credit.

Example:
 2⍕ 100 0 20 0 ¯10 0 0 rr 0 .03 .04 .06 .02 .02 .04
100.00 103.00 127.12 134.75 127.44 129.99 135.19

Task 2 Introduction
A frequently encountered business decision is how to choose between alternative development projects. A
project will typically have start-up costs (for example, construction and equipment), ongoing costs (for example,
labor, materials and utilities), and, hopefully, revenue. A commonly-used technique to evaluate a project is to
measure the present value of its expected cashflow. Present value is the concept that an amount of money today
is worth more than that same amount of money in the future due to inflation.

To calculate present value, each future amount in the cashflow needs to be discounted by its corresponding
cumulative interest rate and then the discounted values summed.

Task 2: Write a function named pv which will calculate the present value of a cashflow and has the following
syntax:
 r ← cashFlow pv rates
where:

• the right argument, rates, is a numeric vector of interest rates where the first value is 0
• the left argument, cashFlow, is numeric vector representing a cash flow.
• the result, r, is a single number representing the present value of the cash flow.

Notes:

• While pv can be implemented using a looping solution, non-looping solutions will be given higher credit.

Examples:
 ¯6200 ¯2000 3400 3850 4300 4750 pv 0 .03 .04 .06 .02 .02
6156.480816

 ¯800 ¯3000 ¯2000 3400 3850 4300 pv 0 .03 .04 .06 .02 .02
4378.758757

Problem 6 – Merge (1 task)
Level of Difficulty: Medium

A common task is merging some sort of data into a template or electronic form. In this
problem we'll be merging data stored in JSON files into a character vector template stored
in a separate text file.

Notes:

• The merge areas of the template are delimited by @.
• Any @ that is not a part of a merge area (for example, it could be a part of an email address such as

'contest@dyalog.com') is doubled '@@' in the template.
• Any merge area that does not have a corresponding named variable in the namespace should be replaced

with '???'.
• There is a sample template and two JSON files provided in the Data folder of the Contest2020.zip file -

template.txt, merge1.json and merge2.json
These files can be read using the ⎕NGET system function:
 data←⊃⎕NGET filename

• The JSON data can be converted into an APL namespace using the ⎕JSON system function:
 ns←⎕JSON data

• ns.⎕NL ¯2 can be used to produce the namelist of variables in namespace ns.
• ns⍎variable can be used to retrieve the value of variable in ns.

Task 1: Write a function named Merge which has the following syntax:
 text ← templateFile Merge jsonFile
where:

• the right argument jsonFile is a character vector representing the name of a JSON file containing data
to be merged.

• the left argument templateFile is a character vector representing the name of a text file containing the
template to be merged into.

• the result, text, is a character vector representing the merged text according to the guidelines above.

Example:
 ⊢template←⊃⎕NGET '/Data/template.txt'
@salutation@ @firstname@ @lastname@;
Congratulations! You have won a @prize@ worth over £@value@!
@firstname@, please come to our office to pick up your @prize@.
Please feel free to contact us at info@@contest.com.
Your email address in our domain is @firstname@@@contest.com

 ⊢merge1←⊃⎕NGET '/Data/merge1.json'
{
 "firstname":"Drake",
 "lastname":"Mallard",
 "prize":"yoyo",
 "value":100
}
 ns←⎕JSON merge1 ⍝ convert JSON to namespace

 ns.⎕NL ¯2 ⍝ variables in the namespace
┌─────────┬─────┬────────┬─────┐
│firstname│prize│lastname│value│
└─────────┴─────┴────────┴─────┘
 ns⍎'firstname' ⍝ retrieve the value of firstname in the namespace
Drake

 '/Data/template.txt' Merge '/Data/merge1.json'
??? Drake Mallard;
Congratulations! You have won a yoyo worth over £100!
Drake, please come to our office to pick up your yoyo.
Please feel free to contact us at info@contest.com.
Your email address in our domain is Drake@contest.com.

Problem 7 – UPC (3 tasks)
Level of Difficulty: Medium

The Universal Product Code (UPC) is a barcode that is widely used for tracking items in stores. The first known
UPC-labeled item to be scanned was a 10-pack of Wrigley's Juicy Fruit chewing gum on 26 June 1974. That pack of
gum is now on display at the Smithsonian American History Museum in Washington, DC.

Each UPC1 barcode consists of a scannable strip of black bars and white spaces and a sequence of 12 digits. There
is only one way to represent a 12-digit number visually and only one way to represent the black bars and white
spaces numerically. Each digit is represented by a unique pattern of 2 bars and 2 spaces. The bars and spaces vary
from 1-4 "modules" wide. The total width for a digit is always 7 modules.

In the sample below, the annotations in red were added to show the delineation between digits and are not part
of the barcode image itself. The scannable area of a UPC barcode follows the pattern BSLLLLLMRRRRRCE,
where:

• B M and E are the beginning, middle, and end guard patterns. They are the vertically longer bars in the
barcode and do not represent digits. B and E have the pattern bar-space-bar (101) and M has the pattern
space-bar-space-bar-space (01010).

• S is the number system digit (the leftmost 2 in the sample). The number system digit is a convention that
indicates the use of the barcode. For instance, 2 is generally used for items sold by variable weight (meats,
fruits, vegetables, etc.), 3 indicates a National Drug Code (NDC) number in the U.S., 5 is used for coupons
and so on.

• LLLLL are the 5 left side digits (34523 in the sample)
• RRRRR are the 5 right side digits (45234 in the sample)
• C is the check digit (7 in the sample) and can be used to as one verification that the code was scanned

correctly. The check digit 𝑥𝑥12 satisfies the equation:
(3𝑥𝑥1 + 𝑥𝑥2 + 3𝑥𝑥3 + 𝑥𝑥4 + 3𝑥𝑥5 + 𝑥𝑥6 + 3𝑥𝑥7 + 𝑥𝑥8 + 3𝑥𝑥9 + 𝑥𝑥10 + 3𝑥𝑥11 + 𝑥𝑥12) ≡ 0 (𝑚𝑚𝑚𝑚𝑚𝑚 10)

Or in APL:
0 = 10|x+.×12⍴3 1 ⍝ where x is the vector of digits

1 There are several variations of UPC barcodes. For the purposes of this problem, the term "UPC" refers to the UPC-A
variation.

Using a 0 (for space) or 1 (for bar) for each module, the digits 0-9 can be represented as follows:

Notice that the left representations have odd parity (the number of 1s is an odd number), whereas the right
representations have even parity. The parity can be used to determine the direction in which the barcode was
scanned. Notice also that the left and right representations are the Boolean negation of each other.

A complete UPC barcode consists of 95 modules – 12 digits of 7 modules each (84) + beginning (3), middle (5) and
ending (3) guard patterns.

Task 1: Write a function named CheckDigit which has the following syntax:
 digit ← CheckDigit digits
where:

• the right argument digits is an 11-element integer vector representing the first 11 digits of the UPC
code.

• the result digit is the integer check digit.

Examples:
 CheckDigit 2 3 4 5 2 3 4 5 2 3 4 ⍝ from the sample barcode above
7
 CheckDigit 0 4 3 3 9 6 5 4 6 7 9 ⍝ Charlie's Angels 4K Ultra HD disc
0
 CheckDigit 3 8 1 3 7 0 0 3 8 4 4 ⍝ Aveeno Daily Moisturizing Lotion
3

Task 2: Write a function named WriteUPC which has the following syntax:
 bits ← WriteUPC digits
where:

• the right argument digits is an integer vector of 11 elements representing the digits (in left to right
order) to be represented in the barcode.

• the result, bits, is a 95-element Boolean vector representing the modules of the UPC barcode in left to
right order. If there is an error in digits like incorrect length, or element(s) not in 0-9, return ¯1.

Your function needs to calculate the check digit to include as the 12th digit of the barcode; you may use
CheckDigit from the previous task to do this.

Digit Left Representation Right Representation
0 0001101 1110010
1 0011001 1100110
2 0010011 1101100
3 0111101 1000010
4 0100011 1011100
5 0110001 1001110
6 0101111 1010000
7 0111011 1000100
8 0110111 1001000
9 0001011 1110100

Examples: Your function should return a Boolean vector. The examples use that Boolean to index into '01' so that
the results can be displayed on a single line (albeit in a smaller font).

 '01'[1+WriteUPC 2 3 4 5 2 3 4 5 2 3 4]
10100100110111101010001101100010010011011110101010101110010011101101100100001010111001000100101

 WriteUPC 2 3 4 5 2 3 4 5 2 3 ⍝ too few digits
¯1

 WriteUPC 11⍴42 ⍝ numbers not ∊ 0-9
¯1

Task 3: Write a function named ReadUPC which has the following syntax:
 digits ← ReadUPC bits
where:

• the right argument bits is a Boolean vector representing the scanned bits of the UPC barcode. bits
could be the result of scanning from right to left or left to right.

• the result, digits, is an integer vector of the digits of the UPC barcode in left to right order. If there is an
error in the barcode, like incorrect parity, incorrect number of bits, or the check digit is not correct, return
¯1.

Examples:
 ReadUPC WriteUPC 2 3 4 5 2 3 4 5 2 3 4
2 3 4 5 2 3 4 5 2 3 4 7

 ReadUPC ⌽WriteUPC 2 3 4 5 2 3 4 5 2 3 4
2 3 4 5 2 3 4 5 2 3 4 7

 ReadUPC 1,WriteUPC 2 3 4 5 2 3 4 5 2 3 4 ⍝ too many bits
¯1
 ReadUPC 1 0 0 1 0 0 0@(85+⍳7)⊢WriteUPC 2 3 4 5 2 3 4 5 2 3 4 ⍝ bad check digit (8 not 7)
¯1

Problem 8 – Balancing the Scales (1 task)
Level of Difficulty: Hard

Task 1: Write a function named Balance which has the following syntax:
 parts ← Balance nums
where:

• the right argument, nums, is an integer vector of 2 to 20 elements

• the result, parts, is a 2-element vector of integer vectors where the sums of the elements are equal, and
the concatenation of parts has the same elements as in nums. In other words, if possible, parts should
satisfy the following:

=/+/¨parts ⍝ both parts have the same total
≡/{⍵[⍋⍵]}¨nums (∊parts) ⍝ (∊parts) and nums have the same elements

If nums cannot be split into 2 equally summed groups, return ⍬.

Notes:

• There may be more than correct result. Your solution is correct as long as its result meets the above
criteria.

• Understanding the nuances of the problem is the key to developing a good algorithm.

Examples: (using]boxing on)
 Balance 1 2 3 4 5 ⍝ odd total? Can't split evenly, so return ⍬

 Balance 1 3 ⍝ can't split evenly, so return ⍬

 Balance 10 81 98 27 28 5 1 46 63 99 25 39 84 87 76 85 78 64 41 93
┌────────────────────┬────────────────────────────────────┐
│81 98 46 63 99 85 93│10 27 28 5 1 25 39 84 87 76 78 64 41│
└────────────────────┴────────────────────────────────────┘

 Balance 90 44 76 48 41 50 9 69 30 74 15 56 28 31 52 97 81 78 22 34 ⍝ returns ⍬

 Balance 1 1 1 1 1 1 1 1 1 1 1 1 1 13
┌──┬─────────────────────────┐
│13│1 1 1 1 1 1 1 1 1 1 1 1 1│
└──┴─────────────────────────┘
 Balance ⍳8
┌─────┬─────────┐
│3 7 8│1 2 4 5 6│
└─────┴─────────┘
 Balance ⍳11
┌─────────┬─────────────┐
│3 9 10 11│1 2 4 5 6 7 8│
└─────────┴─────────────┘

Problem 9 – Upwardly Mobile (1 task)
Level of Difficulty: Hard

Imagine you work for IBM (no, not that IBM, you work for Incredibly Big Mobiles) as a
production planner. The mobile designers send you files representing their latest
mobile designs. It's your job to calculate the weights that will keep the mobiles in
balance so that you can ensure there's sufficient inventory and that the production
line knows how to construct the mobiles.

In this problem you're going to write a program that will:

• Read a file containing a diagram which represents a mobile.
• Parse the file to determine the coefficients for each weight.
• Solve the matrix of coefficients and scale them to return a vector representing the set of smallest integer

weights that will keep the mobile in balance.
Notes:

• We recommend you use ⎕NGET to read the file.
• Each file will have content that will look something like this:

 ┌───────┴───────────────┐
 ┌───┴───────┐ ┌───┴───┐
 A B │ C
 ┌──┴──┐
 D E

• The ┴ character represents a balance point (fulcrum).
• The letters represent the weights and will always appear in alphabetic order from top to bottom, left to

right.
• The ratio of weights on each side of the balance point is determined by the number of characters to (and

including) the endpoint (either ┌ or ┐). In the diagram above, the ratio A:B is 4:8, and D:E is 3:3.
• The diagram above represents the following relationships:

 4A = 8B
 3D = 3E
 4(D+E) = 4C
 8(A+B) = 16(C+D+E)

• Eventually you'll construct a matrix of coefficients and use the matrix divide function ⌹ to solve for a set of
weights.

• There are 3 files provided in the Data folder of the Contest2020.zip file - mobile1.txt, mobile2.txt, and
mobile3.txt.

Task 1: Write a function named Weights which has the following syntax:
 weights ← Weights filename
where:

• the right argument filename is a character vector representing the name of a file.
• the result weights is a vector representing the set of smallest integers that will keep the mobile in

balance. weights should be in "alphabetic" order according to the diagram.

Examples: (these results are correct for the supplied files)
 Weights¨'/Data/mobile1.txt' '/Data/mobile2.txt' '/Data/mobile3.txt'
┌───┬──────────┬────────────────┐
│2 1│16 8 6 3 3│21 14 8 13 16 12│
└───┴──────────┴────────────────┘

Judges' comment on this problem:
This is the most difficult problem in the competition and likely requires an iterative or recursive solution. (If you
find an elegant, array-oriented solution, we'll be really impressed!)

	2020 APL Problem Solving Competition – Phase II Problem Descriptions
	Welcome!
	How to Participate in Phase II
	Using the Contest2020.dws workspace
	Using the Contest2020.dyalog template file
	Use of tacit or derived functions in Phase II

