DVALOC
APL Problem Solving Competition
Phase 1

Introduction

The Phase 1 problems are designed to be solved using short APL functions. If you
find yourself writing more than a couple of statements in your solution, then there is
probably a better way to do it.

Submission format
Each solution must be a single dfn or tacit function.

A dfn is one or more APL statements enclosed in braces {}. The left hand argument,
if any, is represented in a dfn by a, while the right hand argument is represented by
w. For example:

'Hello' {a,'-'",w,"'!"'} 'world'
Hel lo-world!

A dfn terminates on the first statement that is not an assignment. If that statement
produces a value, then the dfn returns that value as its result. The diamond symbol ¢
separates APL statements. For example:

"left' { w ¢ o } 'right'
right

More information on dfns can be found on the APL Wiki.

A tacit function is an APL expression that does not explicitly mention its arguments.
In the example below, (+#+#) is a tacit function that computes the average of a
vector (list) of numbers:

(+#+#2) 1 2 3 4 5 6
3.5

More information on tacit functions can be found on the APL Wiki.

Judging Guidelines

When you submit a Phase 1 solution, it will be automatically tested using a number
of basic and edge cases. Solutions will mainly be judged based on:

¢ Generality: does your function handle the given basic and edge cases?
¢ Use of array-oriented thinking: did you write array-oriented APL or something
that looks more like C# written in APL?

You should not include comments in your Phase 1 solutions.

Tips

e Several of the problem descriptions will describe arguments that can be a scalar (a
single element) or a vector (a list). This is largely pedantic, but in such cases your
functions should produce correct results for both types of input.

¢ The symbol a is the APL comment symbol. In some of the examples, we provide
comments to give you more information about that particular example.

e Some of the problem test cases use "boxed display" to make the structure of the
returned results clearer. Boxing is always active on TryAPL and can be enabled in
your local APL Session with the 1Box on user command:

1l

1 12 123 1234
JBox on

Was OFF
1l

111 21 2 3|1 2 3 &

Sample problem

The content of the orange box shows what a typical Phase 1 problem description
looks like. It also presents some possible solutions of varying quality, and explains
how to provide your own solution.

Each problem starts with a task description; some also include a hint suggesting
one or more APL primitives. These may be helpful in solving the problem, but you
are under no obligation to use them. Clicking on a primitive in the hint opens the
Dyalog documentation page for that primitive.

Each problem ends with some example cases. You can use these as a basis for
implementing your solution.

Counting Vowels A

Write an APL function to count the number of vowels (A, E, I, O, U) in a
character vector or scalar consisting of uppercase letters (A-Z).

‘@: Hint: The membership function XeY could be helpful for this problem.

Examples
(your_function) 'COOLAPL'
’ (your_function) "' A empty argument
° (your_function) 'NVWLSHR' A no vowels here
0

Below are three sample solutions. All three produce the correct answer, but the
first two functions would be ranked higher by the competition judging committee
as they demonstrate better use of array-oriented programming than the third
one.

({+/we'AEIOU'}) 'COOLAPL' A good dfn
(+/€o'AEIOU') 'COOLAPL' A good tacit function

A suboptimal dfn:
{(+/w="A")+(+/w="E")+ (+/w="1")+(+/w="0")+(+/w="U")} 'COOLAPL'

1: Elimination Sort 1

An "Elimination Sort" is a somewhat farcical sorting algorithm which starts with
the leftmost element and keeps subsequent elements that are at least as large as
the previous kept element, discarding all other elements. For example:

EliminationSort 35 5 1 6 1 1 8 4 3 4 1 4
1 3788 810

Write a function that:

¢ takes a non-empty numeric vector right argument
e returns an "Elimination-sorted" vector of the right argument

‘@ Hint: The progressive-maxima idiomatic phrase [\, the greater or equal
function 2, and the replicate function / could be helpful in solving this problem.

Examples

(your_function) 110
123456789 10

(your_function) 2 1 4+ 3 6 58 7 10 9
2 4 6 8 10

(your_function) 1000 2500 1333 1969 3141 2345 3141 4291.9
4291.8 4292
1000 2500 3141 3141 4291.9 L4292

EliminationSort 1 3 73 5858161811084 3 4% 14
13788810

2: Put It In Reverse €

The find function XeY identifies the beginnings of occurrences of array X in array

Y.

In this problem, you're asked to return a result that identifies the endings of
occurrences of array X in array Y. To keep things simple, X and Y will be at most
rank 1, meaning they'll either be vectors or scalars.

Write a function that:

e takes a scalar or vector left argument
* takes a scalar or vector right argument

® returns a Boolean result that is the same shape as the right argument where 1's

mark the ends of occurrences of the left argument in the right argument

‘@ Hint: The find function € and reverse function ¢ could be helpful in solving
this problem.

Examples

‘abra' (your_function) 'abracadabra'
0001 000O0O0O01

"issi' (your_function) 'Mississippi'
00001001 O0O0O

'bb' (your_function) 'bbb bbb
0110011

(,42) (your_function) 42

0
42 (your_function) 42
1
(,42) (your_function) ,42
1
"are' 'aquatic' (your_function) 'ducks' ‘'are' ‘'aquatic'
avians'

3: Caesar Salad «»

A Caesar cipher, also known as a shift cipher, is one of the simplest encryption
techniques. In a Caesar cipher, each letter in the plaintext is replaced by a letter
some fixed number of positions away in the alphabet, effectively "shifting" the
alphabet.

Write a function that:

¢ takes a single integer left argument representing the size of the shift

* takes a character vector right argument representing the plaintext message

* returns a result with the same shape as the right argument representing the
encrypted message

Notes:

e Use ' ',D0A as the alphabet

® You can assume that the plaintext message will contain only characters found
in the alphabet.

@ Hint: The rotate function ¢ could be helpful in solving this problem.

Examples

4 (your_function) 'HELLO WORLDS'
LIPPSD SVPHW

"4 (your_function) 'HELLO WORLDS' A negative shifts are okay
DAHHKWSKNH O

0 (your_function) 'HELLO WORLDS' A no shift is okay
HELLO WORLDS

27 (your_function) 'HELLO WORLDS'
HELLO WORLDS

~10 (your_function) A returns an empty vector

4: Like a Version O

One common software version numbering scheme is known as "semantic

versioning". Typically, semantic versioning uses three numbers representing a
major version number, a minor version number, and a build number.

* The major version is incremented when a new version of the software

introduces changes that would make existing applications using the software
fail or behave differently.

® The minor version is incremented when new features are added that didn't

previously exist — no pre-existing use of the software will fail in this case.
® The build number is incremented for bug fixes and similar changes.

Write a function that:

¢ takes 3-element integer vector left and right arguments each representing a
major version, minor version, and build number.
® returns

o ~1 if the left argument represents a version number older than the right
argument

o 0 if the left argument represents a version number equal to the right
argument

o 1 if the left argument represents a version number newer than the right
argument

@ Hint: The less function < could be helpful in solving this problem.
Examples

1 2 3 (your_function) 1 2 3

1 2 3 (your_function) 1 0 9

14 2 11 (your_function) 14 2 12

5: Risky Business <2

The board game Risk is a game of world domination where opposing players roll
dice to determine the outcome of one player's armies attacking another's. The
attacker can roll up to three 6-sided dice and the defender can roll up to two 6-
sided dice. The resulting rolls are then individually compared from highest to
lowest. If the attacker's die value is greater than the defender's, the defender
loses one army. If the defender's die value is greater than or equal to the
attacker's, the attacker loses one army. If one player rolls more dice than the
other other player, the additional dice are not considered in the evaluation. For
this problem, we'll generalize the task by allowing any number of dice for either
the attacker or defender, and any integer values in the arguments.

Write a function that:

* takes a non-empty, descending integer vector left argument representing the

attacker's dice rolls
* takes a non-empty, descending integer vector right argument representing the

defender's dice rolls

* returns a 2-element vector where the first element represents the number of
armies the attacker lost and the second element represents the number of
armies the defender lost.

Note: The left and right arguments do not need to be the same length.

@ Hint: The less function < could be helpful in solving this problem.

Examples

6 6 4 2 1 (your_function) 6 5 5 a attacker loses 2 armies,

defender loses 1 army
2 1

6 (your_function)d, 5 @ 0, ravels both arguments (making them
vectors) before passing them to your function
01

4 0 "1 (your_function) 3 1 2
12

6: Key/Value Pairs @

Representing data as key/value pairs (also known as name/value pairs) is a very
common technique. For example, it can be found in query strings in HTTP URIs,
attribute settings in HTML elements, and in JSON objects. One common
representation for a key/value pair is to have a character key (name) followed by
an equals sign (=) followed by the value. Multiple key/value pairs can be
separated by a delimiter character or characters. For example:

keyl=valuel;key2=value2

Write a function that:

* takes a 2-element character vector left argument where the first element
represents the separator character between multiple key/value pairs and the
second element represents the separator between the key and the value for
each pair.

* takes a character vector right argument representing a valid set of key/value
pairs (delimited as specified by the left argument).

® returns a 2-column matrix where the first column contains the character vector
keys of the key/value pairs and the second column contains the character
vector values.

Note: You may assume that there will be no empty names or values in the right
argument.

@ Hint: The partition function < could be helpful in solving this problem.

Examples

p O« ='(your_function)'language=APL dialect=Dyalog’

language | APL

dialect |Dyalog

2 2

p O« 's:'(your_function)'duck:donald’

duck|donald

12

p O« '/:'(your_function)'name:Morten/name:Brian/name:Adam'

name |Morten

name|Brian

name | Adam

7: Let's Be Rational -

A rational number is a number that can be expressed as the quotient of 2 integers

p+q — a numerator p and a denominator g. For example, for 1.5, p and q would
be 3 and 2, respectively.

Write a function that:

* takes a single non-zero positive number right argument.

® returns a 2-element "integer" result representing the smallest non-zero positive
values for p and q respectively

Notes:

e We use "integer" in the result description because the result might contain a
number larger than can be represented as an integer data type in Dyalog APL.
For example, the result when applying the function to | /8 would be
1.797693135E308 1 which is represented as a 64-bit floating point array.

* The test for the correctness of your solution will be that, given
r <« (your_function) a
your solution should satisfy both the following:

L0.5+r

+/r

o r

© a

@ Hint: The Lowest Common Multiple function a or Greatest Common Divisor
function v could be helpful in solving this problem.

Examples
(your_function) 1.2
6 5
(your_function) 3.5
7 2

(your_function) +3
13

8: Critical Thinking

21 April 2023: Please see the note at the end |
of the problem description

The biorhythm theory is a pseudo-scientific idea
that one's life is affected by three rhythmic
cycles beginning from one's date of birth. The
cycles are:

* The Physical cycle, with a periodicity of 23

days, affecting co-ordination, strength, and general well-being

* The Emotional cycle, with a periodicity of 28 days, affecting creativity,
sensitivity, mood, perception, and awareness

* The Intellectual cycle, with a periodicity of 33 days, affecting alertness,
analytical functioning, logical analysis, memory, and communication

"Critical days" are days when a cycle crosses the x-axis in either direction and are
purported to be accompanied by unstable conditions in the corresponding area.
A "double critical day" occurs when two of the three cycles cross the x-axis on the
same day. Starting from one's birthdate, double critical days occur on multiples of
the least common multiple of the half of the periodicities of the two involved
cycles. Thus Physical-Emotional, Physical-Intellectual and Emotional-Intellectual
double critical days can be calculated respectively using multiples of:

23 23 28a8(%02)28 33 33
322 379.5 462

Fortunately, the dreaded "triple critical day", when all three cycles cross the x-axis
on the same day, only occurs every (/23 28 33+2) or 10,626 days (a bit more
than 29 years).

Write a function that:

* takes a 3-element integer left argument representing a valid birthdate

¢ takes a 3-element integer right argument representing a valid date occurring
on or after the left argument

* returns a 3-element integer array representing the date of the next double or
triple critical day occurring on or after the date represented by the right
argument.

Note: All the dates in this specification are to be in the form year month day

@ Hint: The date time system function ODT and residue function | could be
helpful in solving this problem.

Examples
1962 10 31 (your_function) 2023 1 1
2023 2 4

1961 2 23 (your_function) 1961 2 23 A one's birthdate is a
triple critical day
1961 2 23

21 April 2023 Note:

We messed up... Even though we said a critical day occurs when a cycle crosses
the x-axis in either direction, we didn't account for that in the subsequent
description. (Unfortunately, neither did the reference we used when researching
this problem.) We've amended the description above and copied the original text
below.

To be fair to people who have already submitted "correct” solutions, we will
accept solutions that conform to either the original or current descriptions.

We also express our thanks to the participants in The APL Orchard for bringing
this to our attention.

Original text:

"Critical days" are days when a cycle crosses the x-axis in either direction and are
purported to be accompanied by unstable conditions in the corresponding area.
A "double critical day" occurs when two of the three cycles cross the x-axis on
the same day. The periodicity of double critical days is the least common
multiple of periodicities of the two involved cycles. So, the periodicities of the
Physical-Emotional, Physical-Intellectual and Emotional-Intellectual double
critical days can be calculated respectively as:

23 23 28428 33 33
644 759 924

Fortunately, the dreaded "triple critical day", when all three cycles cross the x-
axis on the same day, only occurs every (A/23 28 33) or 21,252 days (a bit

more than 58 years).

9: Flipping Pairs =

This problem has no practical use in the real world (that the author can think of)
other than to give your array manipulation muscles some exercise.

Write a function that:

e takes a non-empty non-scalar array right argument

* returns an array of the same shape as the argument, but with pairs of elements
along the last axis "flipped". If the array has an odd number of elements in the
last axis, leave the last element unchanged.

@: Hint: Either the reverse function ¢ used with the partitioned enclose function ¢,
or the grade up function A used with the index function], could be helpful in

solving this problem.

Examples

oo~ FN

(your_function) 110

14365871009

(your_function) 19

14365879

N o1 w -~

(your_function) 4 2p18

(your_function) 4 3p112

2
5
8
11

2
5
8

11
14
17

20
23
26

1
L
7
10

1
4
7

10
13
16

19
22
25

"APL'

3
6
9
12

(your_function) 3 3 3p127

O oM W

12
15
18

21
24
27

(your_function) 2 3p'donald' 'duck'

duck

donald|wrote

good

some APL

'wrote'

'some’

'good’

10: Partition with a Twist Z

Splitting delimited data into sub-arrays using partitioning on a delimiter character
(or characters) is a fairly common operation in APL. For instance, if you partition
the character vector 'this is an example' on each occurrence of the space
character, there would be 4 sub-arrays: "this' 'is' 'an' 'example'. This
problem adds a slight twist to the operation in that the left argument indicates
how many sub-arrays to return.

Write a function that;

* takes a non-negative integer left argument, N
* takes a space-delimited character vector right argument, string
* returns an array of length N where:
o if N is less than or equal to the number of sub-arrays in string, the first N-1
elements of the result are the first N-1 space-delimited partitions in string.
The N element of the result is the remaining portion of string.
o if N is greater than the number of sub-arrays, pad the result with as many
empty arrays as necessary to achieve length N.
Note: Each space in string be considered as a delimiter. This means that
leading, trailing, or contiguous spaces are potentially significant.

‘@ Hint: The partitioned enclose function < could be helpful in solving this
problem.

Examples

1 (your_function) 'this is a sample’

this is a sample

2 (your_function) 'this is a sample'

this|is a sample

4 (your_function) 'this is a sample'

this|is|a|sample

p'4 (your_function) 'this is a sample' @A each sub-array is a
vector

Ll12]1]6

13 (your_function) ' this 1is a sample ' n note the
leading, trailing, and multiple interior spaces

this||is||a|sample

0 (your_function) 'this is a sample' A returns an empty
vector

4 (your_function)

